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Introduction

Nanomechanical resonators or oscillators were recently studied in experi-
ments |7, 9]. They consist of a shuttle installed on top of bridges or can-
tilevers. This shuttle is embedded in a measurement circuit and is resonant
excited by another electrical circuit [6] or sonic waves [3]. Current through
the measurement circuit is produced through mechanical transport of elec-
trons on the shuttle. When the shuttle is close to the electron source, elec-
trons tunnel onto the shuttle whereas they tunnel of the shuttle when the
shuttle is close to the drain. Current induced due to this tunnel on, tunnel
of process was already treated using a master-equation e.g. [5]. Thinking of
the gaps between source/drain and the shuttle as potential barriers, resonant
tunneling is another possibility for electron transport through the oscillator.
We use a time-independent scattering approach to describe the resonant
tunneling process through the oscillator at rest. To take into account the
shuttle’s slow motion, a separation of time scales is applied. Using the adi-
abatic expansion enables us to apply the results from the time-independent
scattering approach to time-dependent problems.

Mesoscopic systems, such as the nanomechanical oscillator, allow the study
of quantum effects on intermediary sized system, and quantum-transport
therein has wide application in nanoeletronics. Consequently, it is of par-
ticular interest to study the motion of electrons, their quantum transport,
through mesoscopic-circuits. Once these mesoscopic circuits contain moving
mechanical parts, as the nanomechanical oscillator, modeling them requires
the treatment of time-dependent problems.

Application of scattering concepts requires a separate treatment of an inner
part, the scattering region (SR), and an outer part of the circuit(see fig. 1.1).
The outer part consists of electron reservoirs (ER, e.g. voltage sources and
measurement devices) and leads that connect the electron reservoirs to the
scattering region. The outer region is treated classically whereas the scat-
tering region is the mesoscopic part to study (the sample). As the sample
is small in its size compared to the length of the leads, and the dwell time
of an electron within the sample is considered small compared to the time
resolution of the process, the electrons are considered coming in from +oo
(in space) for time ¢ = —oo and leaving to +oo for time ¢ = +oo. This
concept proved very useful to describe electron transport and thereby also
the current in time-independent mesoscopic-circuits.
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Figure 1.1: The basic scattering setup for mesoscopic-circuits, here with
four electron reservoirs (ER). The dark gray regions indicate the electron
reservoirs (ER) and the light gray lines display leads. All these objects
belong to the outer region. The black central object is the scattering region
(SR).

Using these scattering concepts that are designed for time independent sam-
ples, it is possible to describe mesoscopic-circuits coupled to mechanical os-
cillation. Thereby the basic idea is that the quantum-transport does happen
so quickly that the sample did barely change while the electron is in the sam-
ple. This means that the oscillation period of the mechanical parts within the
circuit is much larger then the dwell time of an electron within the scatter-
ing region. Using this assumption, we can approximate the time-dependent
problem using the time-independent scattering approach. Goind beyond the
instantaneous problem is called adiabatic expansion. It proved fruitful to de-
scribe backactions of the fast electrons on the slow mechanical motion as well
as effects of the slow mechanical motion on fast moving electrons. Influence
of the slow motion on the fast electrons, was treated e.g. by Moskalets and
Biittiker[8]. Backactions of the electron flow (current) on the slow motion
was treated e.g. by Thomas et al.[10].

In this work we use concepts of scattering and adiabatic expansion to model
a nanomechanical oscillator (see. fig. 1.2). The scattering region for the
oscillator consist of an island of fixed diameter and vanishing resistivity,
the shuttle, embedded in a vacuum. We expect electrons to move freely
within the shuttle whereas we expect them to tunnel through the vacuum.
We assume that the mechanical motion for our system is a slow mechanical
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oscillation of the shuttle.

lead shuttle lead

Figure 1.2: The nanomechanical oscillator with ideal leads on each side,
which are connected to the rest of the circuit. Gray regions indicate con-
ducting components and allow for free electron movement. White regions in-
dicate a high resistivity which restricts the electron’s movement. The shuttle
in the center is slowly oscillating back and forth.

Resonant tunneling is already present in a one dimensional model. Therefore
for simplification the oscillator is modeled as a 1D mesoscopic sample. This
means, that we concentrate on the dashed line in fig. 1.2.

In this work we will firstly use time-independent scattering theory to un-
derstand quantum transport through the oscillator. Secondly, we use the
adiabatic expansion up to first order to model the shuttle’s movement. To
calculate both the zeroth and first order we only need to solve the time-
independent scattering problem and treat it with time-dependent
parameters [8].

We begin with an introduction to the stationary scattering matrix S, the
main object used in time-independent(stationary) scattering theory.
Throughout the next subsections, we step by step model the nano-mechanical
oscillator coupled to electronic reservoirs. To this end, we first calculate
the scattering matrix of a rectangular barrier. This barrier is treated in a
tunneling limit in the following subsection in more details. We will then
make use of a composition law for scattering matrices to model the shuttle
embedded in the insulator sea. Closing section 1, resonances originating
from quantum interference are studied.

The second section deals with effects of the shuttle’s motion using the adi-
abatic expansion. Firstly the idea of adiabatic expansion for our setup is
outlined. In the following sections we will obtain the zeroth order correction
the S;-matrix and the first order correction strength matrix Ay.



Scattering Theory

Before we can discuss effects of the shuttles’s slow motion, it is essential to
understand the physics for the time-independent oscillator. Further more,
we will see in section 3 that the results obtained for the time-independent
oscillator can be used to make predictions for the slowly moving shuttle.

As we want to study quantum effects of electrons moving through the oscil-
lator we will consider the oscillator as a mesoscopic sample that is connected
with two ideal leads (see Fig. 1.2) on both sides. These ideal leads are both
connected to different electron reservoirs.

For simplification, we consider these leads to be small in their size in y and
z directions whereas the leads should be long in x direction. Hence, we can
neglect the influence of propagation modes in y and z direction and deal
only with movement in x direction. The transverse modes are referred to as
"channels". Leads which are considered to have no such transverse modes
are called single channel leads. We can see a sketch of a sample that is
connected to two different single channel leads in Figure 2.1.

Figure 2.1: The basic scattering setup for a sample connected to two single
channel leads. Further, there is an electron coming in through the left lead
at time ¢ = —oo but we cannot know whether the electron will leave the
sample traveling to the right or traveling to the left for ¢ = +oo.

Due to the quantum nature of the interaction of electrons with the sample
we cannot say whether each individual electron will be transmitted through
the sample or whether it is back scattered. We can only make predictions in
terms of probabilities for the electron’s state after it has left the scattering
region. These probabilities are used to predict the behavior of the sample
when being connected to electron reservoirs. Some physical properties of
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the sample depend only on the probabilities and properties that are further
specifying the reservoirs. Others depend on the phase shift of a transition
from incoming to outgoing states too (see e.g. section 3.2).

Scattering theory deals with the transition of incoming particles, which are

in an incoming state for time ¢ = —o0, and the outgoing particles which are
in an outgoing state for t = +00. The properties of transitions on large time
scales from ¢t = —oo to t = 400 are collected in the scattering matrix. To

clarify: Information about the process for any finite time ¢ is not included in
the scattering matrix. Nevertheless the scattering matrix is a central element
of scattering theory and many properties of the sample could be obtained
with its help.

For our time-independent 1D single channel problem (time-independent os-
cillator) there are only two possible incoming states (+ states) for fixed
energy. These represent an electron coming in through the left (see Fig. 2.1)
or through the right lead. In addition, there are only two possible outgoing
states (— states) which are an electron leaving through the left or right lead.
So for the 1D single channel problem there are four possible transitions. The
properties of these transitions on the large time scale already discussed are
combined in a two by two matrix, the scattering matrix or S-matrix.

The main properties of a 1D single channel scattering matrix are described
in section 2.1. The scattering matrix for the oscillator is then obtained
step by step throughout sections 2.2-2.5. We start with a single rectangular
barrier as a model for high resistivity regions in section 2.2. This barrier is
considered in a tunneling limit in section 2.2.1. Two scattering matrices, each
modeling a single barrier in the tunneling limit, are used to model the entire
oscillator in 2.4. We therefore make use of formulae for the combination of
two scattering matrices which are derived in section 2.3. Finally, a resonance
in the transmission probability for the oscillator is studied and a scattering
matrix for further study of the resonance is developed in section 2.5.

2.1 The S-matrix

We will discuss time-independent scattering theory, especially the scattering
matrix, in 1D with two leads, each with a single scattering channel. We
follow notation from[10].

The system of interest should be described by a single particle Hamiltonian
Hx = Hy + Vx with a free particle Hamiltonian Hy = % where m is the
mass of the particle. We are especially considering electrons. In particular,
the potential Vx is dependent on a parameter X so that the potential in
position space Vx(x) is fixed for all x when specifying this parameter. As
the sample should be of finite size we would expect the potential to vanish
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outside a finite region. Outside this region the free particle Hamiltonian
describes the movement of the electron within the leads. As the Hamiltonian
is time independent we can reduce the time dependent Schrédinger Equation
to the time independent Schrodinger Equation (2.1). In this way we also
properly defined the energy E. From all solutions to the time independent
Schrodinger-Equation

(Ho+ V(X)) W5 ) = B0, ) (2.1)

we concentrate on two different basis sets (4, —) each with two (R/L) ba-
+/-

R/LX
wise stated. The subscripts R/L correspond to the direction of propagation
whereas the superscripts +/— indicate whether we are dealing with a state

before (+) or after (—) the scattering.

sis states |W ). The states are considered for energy F unless other-

To further specify the basis sets we consider the eigenstates |,/ (F)) of the
free Hamiltonian Hy which fulfill

Ho|pr/r) = E|dr/L) - (2.2)

;?ZX> are related to the

eigenstates of the free Hamiltonian |¢g/r) via the Lippmann-Schwinger
Equation

The basis states with non-vanishing potential |¥

W7 ) = |omyn) + GF TV 157 ). (2.3)

If the free eigenstates are normalized so that (¢, (E')|pn(E)) = 2780 (E' —

E) with m,n=R/L the \\I/;ZX) are normalized in the same manner. The

retarded (4) or advanced (—) Greens function G*/~ in the Lippmann-
Schwinger Equation is

G/~ = lim !

- (2.4)
n—ot B — Hx £1in

According to the Green’s function the scattering states are also called re-
tarded (+) or advanced (—) scattering states. The retarded or advanced
Green’s functions correspond to the different boundary conditions|10]. We
will see this property when discussing scattering in position space. We are
now able to define the time independent scattering matrix Sx.

;o (O (BN (B) (U, (BN (E))
wsud(F - B)Sx = (LX) e EINe ) e

We can see that the scattering matrix is a basis transformation from incoming
(+) states to outgoing (—) states. As the probability for a transition from
an incoming state to an outgoing state is the absolute value squared of the
corresponding matrix element, the entries of the scattering matrix are the

6
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probability amplitude of the corresponding incoming state ending up as the
corresponding outgoing state. Further, the matrix elements also include the
phase-shift originating from passing through the scattering region. Speaking
of probabilities we would expect a conservation of particle. This means that
the probabilities for all possible transitions from a single incoming state sum
up to one. We find this main property of the scattering matrix in its unitarity

t _ + (10
SySx =SxSy = (O 1). (2.6)
The diagonal terms of the resulting matrix ensure conservation of particle.
The off diagonal terms ensure orthogonality of the states (R/L) within a
basis set (+/—). We can show that the scattering matrix from Eq. (2.5) is
unitary since the advanced states ]\IIE/RX> and the retarded states |\IJI/RX>
form an orthonormal basis for fixed X and energy E. See Appendix A for a
detailed proof of the unitarity.

Let us now have a look at the scattering setup in position space. As we are
considering potentials which are confined to a finite region for all X we can
use Figure 2.2 to visualize the retarded and advanced scattering states. The
illustration of the picture should be considered as an ansatz for the states
outside of the scattering region. In particular, we would expect electrons
to travel freely within the leads. Note that we make no predictions for the
scattering region, considered and displayed as a black-box. The retarded
scattering states only have a single particle incoming, whereas the advanced
scattering states have only one outgoing particle.

It is often convenient to choose the basis for the ansatz as plane waves outside

the scattering region. In position space these plane waves look like e?** (wave
travelling to the right) or e~ (wave travelling to the left) with k = 7”2;1”19

As the plane waves are complex conjugate to each others, we find a relation
between the retarded and advanced scattering states. An incoming state with
initial propagation to the right(left) is the complex conjugate of an outgoing
state with propagation to the left(right). This property is called time rever-
sal symmetry and leads to the equality (U} |U} ) = (V5 |V} ). The
scattering matrix Sx is then equal to its transpose S§.
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Figure 2.2: Visualization for the advanced and retarded scattering states.
The black boxes indicate the scattering region with non vanishing potential.
The retarded scattering have only one incoming wave with of the form et
whereas the advanced scattering states have only outgoing waves of that
form.

Matching the outgoing waves of retarded scattering states with outgoing
waves of advanced scattering states, the retarded scattering states could be
expressed in terms of the advanced scattering states. We find that with the
ansatz from Figure 2.2

Uhx) =t Wgx) +7 9L x), (2.7)
U7 x) =7 [Phx) + 9] x) - (2.8)

Inserting these equations into the definition of the scattering matrix Eq. (2.5)
and using orthonormality of the scattering states we obtain the scattering
matrix with respect to our ansatz

Sy = <I f,) = (’Lf f,) . (2.9)

In the following we will call all four entries of the scattering matrix Sx
scattering coefficients. t,¢ and r,r’ are sometimes called transmission and
reflection coefficient respectively. It is possible to further simplify the scat-
tering matrix if the scattering potential Vx (z) is symmetric with respect to
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a point zg. For such a symmetric problem the scattering process is the same
regardless of whether considered from the left or from the right. This implies
r = r’. For calculations with the scattering matrix it is useful to write the
scattering coefficients in polar form. The scattering matrix would then show
8 degrees of freedom but the unitarity condition reduces the degrees of free-
dom to 4. The total number of degrees of freedom is further reduced by one
for time reversal symmetry. So scattering matrices considered in 1D have
three degrees of freedom. The polar form used here has three parameters 6,
¢ and [t| and was adapted from|8]:

. 5 ,
Sy =0 [TV g (2.10)
ilt] e” iy /1 — |t|?

This form of the scattering matrix is especially useful for calculations in
section 3 but it is also used when making approximations of the scattering
matrix. The phase ¢ encodes the asymmetry of the reflection from the right
to the reflection from the left. If the symmetry r = 7’ is given we find ¢ = 0.

Finally, some special cases for the scattering matrix should be kept in mind.
These special cases are frequently found as limits in more general cases.
Given that the retarded and advanced scattering states are equal |W

| W

R/LX)
the Sx-matrix simplifies to

Sy = (g’ é) (2.11)

This means that a particle that starts traveling in one direction will end up
traveling in the same direction after the scattering process. We can find this
case for vanishing potential. On the other hand the scattering matrix is

_p2ikLiefs
e 0
SX - ( 0 _e_zikLright) (212)

for vanishing transmission probability. Thereby, Lyt and Lyjgn indicate
indicate the position of the divergence. A particle traveling in one direction
(R/L) is leaving the scattering zone traveling in the other direction (L/R).
Barriers of infinite height describe a setup where we find a scattering matrix
in the form of Eq. (2.12).

Binx)
R/LX

2.2 Single rectangular barrier

We obtain the scattering matrix for a single rectangular barrier. The scat-
tering matrix is defined in Eq. 2.5, to obtain it, we have to take care of the
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phases as well as of the transmission amplitudes. The scattering matrix

S = (’; ;) (2.13)

for a single rectangular barrier is calculated. We have already used time
reversal symmetry (¢ = t') and the symmetry of the potential which results
in 7 = /. Note that we have dropped the dependency on a parameter X
as used in section 2.1 for notational simplicity. To obtain the scattering
matrix, wave functions W(z) which are solutions to the time independent
Schrodinger equation

HVY(z) = E¥(x) (2.14)

in position space are discussed and then the sgattering matrix is obtained.
The Hamiltonian in position space is H = —4-02 + V() with a piecewise

m
constant potential
0 Tz < LO — %
Ve)=qW Li-§<z<Li+7y (2.15)
0 Lo+35<=x

where Vo > 0 (see fig. 2.3). The barrier spans the space from Lo — § to
LO -+ %

A

V(x)

Ly-w/2 L,tw/2 X

Figure 2.3: The piecewise constant potential V' (z) for a rectangular barrier.

In principle the scattering matrix is defined as a basis transformation from
incoming states to outgoing states. For explicit calculations the ansatz pre-
sented in Figure 2.2 is widely used. We thus needn’t calculate the basis
transformation but we can use the scattering matrix from Eq. (2.9). So we
start with a general solution of the Schrédinger equation (2.14) which for
this potential is given as

a1e™® £ e x < Lo— g
U(z) = aze P +bpe?™ Ly—L<a<Ly+¥ (2.16)
ageikx +b36_ikx Lo+ % <z

10
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where k and p are given as

2mE
o/ 7;; (2.17)

P LN ek 2) e = S 1_<k>2, (2.18)

h2 v

v = 7”2%”‘/0 was defined according to Vy as k to E. In the case Vj > E and
FE > 0 the parameters k, v and p are real. We make an ansatz for a retarded
scattering state of the form
eik‘(.’szo) + ,,,efik(:vaQ) T S LO _ %
Uh(x) = Afterr 4 Altere Lo—%<ax<Ly+% (2.19)
teik(.l‘—L()) LO + S T

ISIISESIS

which describes a wave incoming from the left which is reflected off the
barrier with a reflection coefficient r € C and is transmitted through the
barrier with the transmission coefficient ¢ € C. As the potential is finite for
all z the wave function ¥ and its derivative with respect to z are expected
to be continuous for all z. Matching ¥} (z) and 8, ¥} (z) at z = Lo — % and
x = Lo + % results in the four linear equations for the four parameters r, ¢,
Af, AR as function of the parameters k, p, w and Lg. From these equation
we can find the transmission and reflection coefficient

4’ka e—pw
t — e—ik’w (’ip+l€)2 (220)
- e
i
io—k 9
p— _—ikw itk (1—e72v) (2.21)
— Elp;:;z e—2pw
o
(2.22)

One can check that our scattering matrix is indeed unitary. For E > 1}
these formulae could also be found, and better understood using the Fresnel-
equations together with the idea of multiple reflection from section 2.3. The
Fresnel-equations describe the reflection and transmission of light passing
from one medium into another with a different refractive index|4, p.238|.
Using the wave-vectors k; and ke we can write the reflection (Rp) and trans-
mission (Tr) probability obtained from the Fresnel-equations as

Rp = (kl — k2>2 (2.23)

k1 + ko

Ty = L’f??_ (2.24)
(k1 + k2)

11
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Note that we only consider incoming light that hits the surface between
the media at right angle. As the transmission or reflection probabilities
are the same with k; and ko interchanged we can use the same reflec-
tion/transmission probability for the left or right end of the rectangular
barrier. For the rectangular barrier the corresponding wave numbers are ip
and k.

As we know there are transmission and reflection resonances for multiple
reflections. For E > Vy > 0 and ipL = nw (n € N) we find a transmission
resonance with |¢| = 1 whereas for ipL = (n + 1/2) m we find local transmis-
sion minima. This is due to the multiple reflections between the edges of the
potential barrier.

For tunneling processes with Vy > E > 0 similar ideas apply. The probability
reduction during the bouncing process is not happening due to |r| < 1 but
rather due to the distance-traveled between the two ends of the barrier.

Other elementary properties of the scattering matrix could also be checked.
We see that the scattering matrix is indeed independent of the position of
the scattering potential Lg. Further, we find that making the substitution
p ~ ik which is equal to V) < E, the scattering matrix satisfies the high
energy limit Eq. (2.11). For low energies V) < E = v < k the scattering
matrix assumes the form of Eq. (2.12).

2.2.1 The tunneling limit

Before we expand the scattering matrix for a single rectangular barrier in the
tunneling limit there is one thing to keep in mind when expanding scattering
matrices. Let us assume we have a scattering matrix S that is symmetric
and depends on a small parameter e. Expanding the scattering matrix with
respect to the parameter e ignoring terms of order n by simply expanding
each element of the scattering matrix leads to a scattering matrix S

=1 £)= (105 £10) -sroer  an

The new "scattering matrix" S is unitary when dropping terms of order n. As
the unitarity is very important, keeping this property while expanding should
be a primary goal. The Biittiker representation of the scattering matrix (see.
Eq. (2.10)) is very useful to achieve this goal. The unitarity of the scattering
matrix is automatically upheld for all choices of the parameters |t|, 6 and ¢.
So we try to expand the scattering matrix while keeping the unitarity. As
the scattering matrix for the rectangular barrier fulfills » = r’ we find ¢ = 0.
Thus, it is sufficient to expand only one entry of the scattering matrix. The
whole scattering matrix in that approximation is then calculated splitting
the expanded entry into absolute value and phase factor.

12
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As we are interested in tunneling processes, we would like to find a tunneling
limit for the rectangular barrier from section 2.2. This means we want to
consider only the primary tunneling process and no co-tunneling processes.
This means we ignore tunneling paths which lead through the barrier more
than ones. Therefor the transmission coefficient is considered for pw > 1
up to first order. We will consider the transmission coefficient for kw < 1
and vw > 1. These assumptions imply the usual tunneling limit pw > 1
and % < 1. We first expand the transmission coefficient from Eq. (2.20)
for pw > 1 or equally setting the denominator equal to one as this means
ignoring the longer paths. The transmission coefficient then is

4ipketkwe=rw

‘ (2.26)
(ip + k)
Now we expand for % < 1 which is equivalent to % < 1
K ikw —vw Lkwk
t~ —di—e"e ez (2.27)
v
Finally we use that kw < 1 and % < 1 which then leads to
k —vw
t~ —4di—e Y. (2.28)
v

We can now use this approximated result for the transmission coefficient to
calculate a unitary scattering matrix. We therefore split up the transmission
coefficient into phase ie? = —i and into absolute value |t| = 4%6*”“’. We
can then use the Biittiker form from Eq. (2.10) with # = 7 and ¢ = 0 and
find the unitary scattering matrix

o —\/1 — 16 (£)? 20w —dikevw

. (2.29)
—4ike—vw —\/1 — 16 (&) e—2vw

The scattering matrix describes the probability for the shortest and thus
most likely tunneling path (thinking of Feynman path integrals again). In
comparison with the scattering matrix for the rectangular barrier we have
dropped both the phase information and longer tunneling paths.

2.3 Composition of two S-matrices

To model the shuttle setup we need to later on combine two scattering ma-
trices to get a scattering matrix S5 describing the whole system. Obtaining
the scattering matrix this way is sometimes a lot easier than matching the
boundary conditions for the whole setup. (The same formulas could also

13
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be obtained matching the boundary conditions.) It is further interesting to
see that even though the modulus of the transmission coefficients of each
single barrier might be small the resulting transmission amplitude of the
double-barrier might be 1.

/
Sis = (”2 tl?) . (2.30)

/
t12 19

Suppose the Hamiltonian in position space H(x) is given as H = Ho+Vi(x)+
Va(z). The potentials Vi (z) and Va(x) are supposed to be different from zero
within an area of length w; and wy respectively. Further the two potentials
are separated by an area of width L where V(z) = Vi(z) = Va(z) = 0. So
the entire potential which is also drawn in Figure 2.4 is given as

0 <0
Vi(z) 0<z<w
V(z)=40 w <z <w +L (2.31)
Va(z) w1+ L<z<w+L+w
0 w1+ L+w <z
V(x)
V(%) : : V,(x) ¢
0 w, w, +L w, +L+w,

Figure 2.4: Potential V(x) for a double barrier setup. The potential is non-
vanishing for 0 < z < w; where V(z) = Vi(z) and for w; + L < 2z <
wy + L 4+ we with V(z) = Va(z) only. The shape of both potentials V;(x)
and Va(x) could be arbitrary.

We further use the the wave-vector

(2.32)

for regions with vanishing potential. Let us assume the scattering matrices
S; and So describing the scattering process at the single barriers Vi (z) and

14
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Va(z) are both transpose symmetric and of the form given in Eq. (2.10).

o[ €4/ — |t]? [t
Sl _ 6191 € | 1’ Z| 1| (233)

i|t] ey /1 — |t

[Py /1 — [to]? ilt
S, — i f2] f2] (2.34)

i |ta] e 914 /1 — |ty]?

The scattering matrix Syo for the full potential V(z) is entirely obtained in
terms of the scattering coefficients of the single barriers and the length of
the gab between the two. Instead of solving the Schridinger equation for the
two barriers the scattering matrix for the full system could also be obtained
using a Feynman path integral concept. This means, we sum up all possible
paths, weighted with their corresponding probability amplitudes, that the
electron could have taken through the double barrier. This way we aim to
find the scattering matrix for the full barrier.

To apply the Feynman path idea we will consider the electron as a wave. The
amplitude of the wave corresponds to the square root of the corresponding
probability. For the transmission amplitude we consider a wave coming in
from the left. This wave is partly transmitted through the first barrier. The
amplitude is reduced by |¢;] and the wave acquires a phase shift ie? (#1).
It then travels a length L without reducing its amplitude but acquiring a
phase shift e?*l (#2).

By now there was only one path for the electron to get through the barrier.
From here there are infinite many ways the electron could take to get to
the other side of the barrier. Each path consists of zero or more bounces
between the barriers before the electron is transmitted through the second
barrier. For each bounce the wave is back scattered off the second barrier,
acquiring a phase shift ¢i®2192) and its amplitude is reduced by a factor

Ira] = 1/1— |ta|®. Tt then travels a distance L, acquiring a phase shift
e"L is reflected from the first barrier acquiring a phase shift ¢(®1=%1) and
its amplitude is reduced by |ra| before it acquires another phase shift e?*”
while traveling the distance L between the two barriers. The possible paths

including up to 3 double-reflections are illustrated in Fig. 2.5.

15



Scattering Theory 2.3, COMPOSITION OF TWO S-MATRICES

Figure 2.5: Possible electron paths for transmission through the double bar-
rier setup. The barriers are indicated as gray boxes, their shape doesn’t
matter for this consideration. Top-left: no double reflection; top-right a
single double-reflection; bottom-left: two double reflections; bottom-right:
three double reflections.

This bouncing between the two potentials may happen up to an infinite
amount of times (#3) but less and less probable. Finally after some bouncing
between the two barriers part |ta| of the wave is transmitted through the
second barrier acquiring a phase shift of i€’ (#4). All in all, the resulting
transmission coefficient of the whole scattering process is

0o
to = Z~6191 ‘tl‘ esz 2 : (61(92+¢2) ’?"2’ esz 62(91—¢1) ‘Tl‘ esz) iezez ’tg‘ )
~~ ~——
#) @2 (#4)
(#3)

(2.35)

As the sum has an argument that has a modulus less then one we can use a
geometric series identity to simplify the sum expression (#3).

o0

Z (ei(92+¢2) 17| kL Li(01—¢1) 1] e""fL)n _
n=0
! (2.36)
1 (ei(92+¢2) |72 eikLei(61—¢1) || eikL) .
So the transmission coefficient is
i01 t kL ’iez t
€7 [ta] e™7e™ o] (2.37)

ti1o = — 1_ (ei(92+¢2) 72| etkL oi(01—¢1) |71 eikL)'

Next we will calculate the reflection happening to a wave coming from the
left. When hitting barrier the left barrier part |ri| of the wave is reflected
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Scattering Theory 2.3, COMPOSITION OF TWO S-MATRICES

acquiring a phase shift e/(®1T91) whereas a part |t; | is transmitted through the
potential 1 getting phase shifted by 7¢*. The wave then travels a distance L,
is reflected of the second barrier’s left side and then travels another distance
L. The same bounce effect takes place as described above leading to the
same infinite sum. This is only valid as we are considering a 1D problem
with only one scattering channel. After the infinite bounce has taken place
part [t1] is transmitted from the right through the first barrier being phase
shifted by ie?1. So the reflection coefficient of the whole setup is

e2ikL (2i01 |t1]2 et (02+02) |75

_ ei(91+¢1 '
1_ (ei(02+¢2)ei(91*¢1)62i“ |71] |7”2|)

r12 ) Ir1| — (2.38)
In the same way we can get the reflection and transmission coefficients for
a wave coming in from the right, being reflected with a reflection coefficient

7’12 or being transmitted with a transmission coefficient /1.

€2ikLei(91 7d)1)€2i92 |7a1 ’ |t2 ’2

P i(02—2) _ 9
r'12 = |rae 1 — (ei0+2) i) kL |1 | |1 (2.39)
g eikL 6i91 ‘t1| ei92 ’t2| (2 40)

12 1_ (ei(92+¢2)ei(6’1—¢1)62ikL 1] \7“2\) .

We simplify the expressions for the reflection coefficients using ‘Tl /2’2 +
2
[t1/2]” = 1.

ei(91+¢1) |T1| o (62i61 62ik‘L6i(92+¢2)) ‘7"2|

- 2.41
12 1— (ez‘(92+¢2)ei(91—¢1)€2z‘kL Ir1] |r2\) ( )

ci(02+¢2) Iro| — (62i9262ik¢L6i(91+¢1)) 71|

/ j—
M2y (ei(02+02)il01=1) e2KL |y | |y ) (2.42)

Of interest to us is the resonance that appears when the bounce phase shift
(see the phases in the denominators of the scattering coefficients) is equal to
—1. This means the modulus of the transmission reaches the maximum value
[1]. If we further consider two identical barriers (their probability amplitudes
are identical) we find a pure transmission resonance with |t12|> = 1. This
implies that the reflection probability |r12|2 vanishes. This might seem quite
strange considering the scattering scenario for a wave coming from the left
which is partly reflected with an amplitude r; before really entering the
scattering region. But it is no problem as we should not think of the wave
traveling in time through the double barrier. We rather try to find all possible
ways that lead to the same result.

To obtain the conditions that lead to the resonance we note that part |rq] is
reflected off the first barrier but the reflection coefficient of the whole barrier
vanishes so there has to be some annihilating part. Let us therefore consider
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Scattering Theory 2.4, TWO RECTANGULAR BARRIERS

the part that is transmitted through the first barrier. After the transmission
it travels freely, it is reflected off the second barrier, travels freely again and
is transmitted through barrier 1 from the right side. The whole phase shift
this part of the wave acquires is —e2?1¢i(92+62)e2ikL wwhereas the reflected
part acquired a phase shift of e!®11#1) only. For destructive interference
they have to be anti-parallel which leads to

_62i91 ei(62+¢2)62ik[/ — _e’i(91 +¢1) . (243)

We left out that part of the wave that is reflected off the right end of the
first barrier and thus begins the infinite bounce. This part initially has the
same phase shift as the one mentioned above but acquires more with each
double reflection. For destructive interfere with the initially reflected wave
the further acquired phase shift has to be one (compare equation (2.36)). So
the second equation for perfect transmission is

p2ikL i(01—61) i(02+d2) _ 1 (2.44)

Even though the equations (2.43) and (2.44) were obtained using different
approaches these two equations are equivalent.

For a resonance with transmission probability one the amount of probability
lost in one bounce round between the two barriers has to be equally dis-
tributed between the left and right side of the whole barrier. We can then
think of the probability on the left side is "stolen" and transferred to the
right side with each double reflection. In the end, the entire probability is
confined to the right side of the barrier.

When the phase shift e2ikLei(01—01)¢i(021¢2) jg ot precisely 1 a phase shift
of Aa is acquired with each bounce. So after a finite number N = = of
bounces from the left to right, the part that first interfered constructively (de-
structively) will then start to interfere destructively (constructively). After
another N bounces the effect is shifted again. So the total transmission co-
efficient drops when the resonance condition Eq. (2.44) is no longer fulfilled.
For low transparency ‘tl /2|2 ~ 0 we find that (far) away from the resonant
case the transparency is almost vanishing t12 ~ |t1]|t2| ~ 0, whereas in the
resonant case the transmission coefficient ¢12 might even become 1.

Finally, there is left to say that similar formulas could be obtained for a
constant potential between the two potential barriers. Therefor you have
to take care of the transition from one scattering potential to the constant
potential as the scattering matrices expect free propagation on both sides.

2.4 Two Rectangular Barriers

Obtaining the formulas describing the shuttle is done straightforwardly using
section 2.3. The scattering matrices for each single barrier are considered in
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Scattering Theory 2.5. RESONANCE FOR TWO RECTANGULAR BARRIERS

the tunneling limit described in section 2.2.1. We assume that the left /right
barrier has width wy /wy and that both are of height V. The gap between
the two is of width L. The scattering coefficients for the double barrier
system are then given as

eZikL\/l —16 (%)2672”“’2 _ \/1 — 16 (%)2672”“’1

9 = 2 2 (245)
1— e%kL\/1 — 16 (&) e—2vun \/1 — 16 (&)" e~ 20we
P 1O R LA
12 — :
1— e2ikL\/1 — 16 (£)? e-20mn \/1 — 16 (£)? e-20w2
16§eikLe—v(w1+w2)
v

1- e%kL\/1 — 16 (£)? 20 \/1 — 16 (£)? e-2vw2

tig =ty = — (2.47)

The scattering matrix associated with these scattering coefficients is indeed
unitary.

2.5 Resonance for two rectangular barriers

As already pointed out in section 2.3 we can find a resonant behavior for a
composed scattering matrix if the resonance condition (2.44) is fulfilled. For
the setup of two rectangular barriers the resonance condition is independent
of the parameters of the two barriers and simplifies to

kL = nm, (2.48)

with n a positive integer. The behavior near the first resonance at kL = 7 is
investigated. Similar results are obtained for the other resonances. The anal-
ysis of the scattering matrix is conducted in terms of the three independent
parameters |t12|, ¢ and 6 in the Biittiker representation Eq. (2.10). We will
start by obtaining an expression for |t12| and e = t12/|t;5| from an approx-
imated transmission coefficient t12. The the analysis is conducted in terms
of the reflection coefficients |t1]| = 4k/ve "1 < 1 and |to| = 45e7%2 < 1 we
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already encountered when dealing with the single barriers.

ik L
th] |t
ty = — e [t [t (2.49)
L— (40 41— 1)1 = [taP7/1 — [t
=tres
oikL |t1] |t2]

B 1= /1= 21— [t 250
P o L VA
1—\/1—\161] V1 [l

=3 Oét'r'es

We defined the width of the resonance for a symmetric barrier as a(k). We
will see that we can consider « to be independent of k. With kL = 7, s
describes the drop of the maximum value with the asymmetry of the barrier.
As we assumed that e7""1/2 <« 1 and k < v we can simplify the expressions
involving #( 15 oc e "1/2 < 1. We will first apply these approximations to

tres~

[t1] [t2] N [t1] |t2]

tT@S_ ~ 1 2
11— Py 1P 1= (1-31P) (-3 P)

taflte] 1
L (!tﬂ? n \t2\2> cosh (2va)

In the last step the definitions of ¢y ;5 were used and the whole system was
parametrized in terms of an antisymmetry parameter a and the total length
of the barriers Ly = wy + w2 (see Fig. 2.6).

(2.51)

%

(2.52)

\
\\
N\

. L+L_ .

<
i« | 0 | i

Figure 2.6: Nanomechanical oscillator with the parameters a and Ly.
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Scattering Theory 2.5. RESONANCE FOR TWO RECTANGULAR BARRIERS

The antisymmetry parameter a allows for a motion of the shuttle as 2a is the
length difference of the two barriers. Keeping Lg fixed changing a enlarges
one barrier while the other one shrinks. The lengths of the two individual
barriers are then given as

L

wy = 70 ta (2.53)
L

wy = 70 —a (2.54)

a = 0 corresponds to two barriers of equal length which then leads to a
resonance with |t13] = 1 for kL = w. For a > 0 (a < 0) the first (second)
barrier is longer than the second (first) one. The restrictions on w, /o imply
the following relations vLg > va > 1 for the new parameters of our system.
We can also use the tunneling limit to simplify 1/2a(k)tyes.

! Ji—tPyi—ilP 1+ (1P + el
ia(k:)tres = R — 5 5 (2.55)
1—\/1—|t1|2\/1—|t2|2 §<|t1| + [t2] )
1 Lﬁevl/o
~ _ 16K (2.56)
1 (\t1|2 i |t2|2> cosh (2va)
2 v?
k) = — evlo 2.
= a(k) 6 12¢ (2.57)

As the dependency of a(k) on k is not very strong, we define « close to

k=r7/L
2

~ 1672
We see that « is exponentially large because the tunneling limit implies
vLg > 1. Tt is now possible to rewrite t15 close to k = 7/L in terms of o and

o L*y?evlo, (2.58)

t'/‘(:‘S'

eikLy
2.
1 —i(kL —7)atyes (2.59)

tlg ~

t
o Jt1a] = (2.60)
\/1 + (kL — ) o212,

— )2 4242
kL \/1 + (kL — m)° a?t2,,
1 —i(kL —7) atyes

= ¢l =

(2.61)

As « is exponentially large, we find that the width of the resonance oc a2

is exponentially small on the kL-scale. Disregarding this sharpness we find
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av
[=——1/25 4/25 = 9/25 = 16/25 |

[=—1125 425w 9/25 w1625 |

(a) Contour plot for [t1s] (b) Contour plot for |t12] cosh(2va)

Figure 2.7: Resonance for resonant tunneling through two potential barriers
(Eq. 2.60). Both plots (a) and (b) display the same choice of o = 1/se®. (a)
shows the resonance’s shape whereas the broadening of the resonance with
a is clearly visible in (b).

that the maximum value of |¢t12| for symmetric barriers (a = 0) remains the
same as for symmetric barriers.

For asymmetric barriers the maximum value of the resonance shrinks expo-
nentially with |va| in its maximal height whereas the resonance broadens in
terms of kL (see Fig. 2.7b). This broadening of the resonance leads to an a
independent integral over k. The transmission coefficient as a function of av
and */Lr is displayed in Figure 2.7.

We can also see from Eq. (2.61) that the phase 6 is well behaved close to
the resonance. Using e = 2 we derive an expression e?¢ for the phase
12
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asymmetry of the reflection coefficients.

kL 1 168 e Lover2ia — 1 — 16K e~ Love-2ua
e2i¢> _ v v

. 2 2
621kL\/1 _ 16%6—L0v6—2va _ \/1 _ 16%6—L0v6+2va

kLrn (1+i(kL—7T))\/1—%W—(1—i(k;L_W))W
(14 (kL — 7)) 1756%@*(1“(%%))\/@
)

(2.63
a1 (I+i(kL—m)) (1 - 2e*®) — (1 —i(kL—7)) (1 - 2e ")
T (A +ikL —m) (1 le2va) — (14 (kL — 7)) (1 — Let2va)

(2.62)

(2.64)

_ —i(kL —m) + @ cosh (2va) + L sinh (2va) (2.65)
—i(kL —m) + @ cosh (2va) — L sinh (2va) '

. —i(kL-m)+ L sinh (2va) (2.66)

i (kL — m) 4+ 1 sinh (2va)

For the last approximation we dropped the terms that are small in both small
quantities a~! and kL — 7. All approximations uphold |r12/r,,| = 1. This is
necessary as r12/r/, should still represent the phase factor e??. Note that for
a =0, €29 =1 whereas for kL = 7, €*¥ = —1. So €*? is discontinuous at
kL =m and a = 0.
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The adiabatic expansion

To describe the effect of the shuttle’s movement on the physical system we
would have to solve the time dependent Schrodinger equation. As the solu-
tion to the time dependent Schrodinger equation is hard to find we thus use
the so called adiabatic expansion. The adiabatic expansion is an expansion
of the exact result for the parametrically time dependent problem for small
frequency of the motion. It uses a seperation of time-scales. The electrons’
dwell time within the scattering region is consider very short compared to
the shuttles oscillation period. To model the shuttles movement we will
vary the antisymmetry a = a(t). The adiabatic expansion then consists of
an expansion in terms of time derivatives of the classical degree of freedom
a(t) [10].

We will consider only the zeroth and first order of this expansion. The
frozen scattering matrix S; is the zeroth order term in the expansion. In the
zeroth order the time dependent system is that of the corresponding time-
independent system with the same parameter a. The first order term aA;
consists of the correction strength matrix A; and time derivative da = a
of the oscillating parameter. With these two terms we can write the exact
scattering matrix S as

3.1 The zeroth order (S;)

The zeroth order in the adiabatic expansion is the S;-matrix or frozen scat-
tering matrix. The frozen scattering matrix S; is the scattering matrix for
the time independent problem where the classical degree of freedom a is now
considered time dependent by setting a = a(t). For the theory on the time
independent problem see section 2.1.

To model the moving shuttle we will consider the scattering matrix obtained
in section 2.5 which describes two rectangular barriers of equal height which
are separated by a length of width L with vanishing potential. To model the
movement of the shuttle we consider the asymmetry parameter a to be time
dependent a = ag sin(wt).
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The adiabatic expansion 3.2. THE FIRST ORDER CONTRIBUTION (Ar)

3.2 The first order contribution (A;)

The first order term aA; in the adiabatic expansion was already defined in
Eq. (3.1). It is possible to express the A; matrix entirely in terms of the
frozen scattering states [10]:

n h -
Atk C= 9 (<8E‘I/ ]8QVQWZW> — (¥

nat

10.VelOEY,,)) (3.2)

nat

where \aE\I/:é(_> = 0p ]\I/;:é{_) with n = R/L denotes the derivative with
respect to energy. The scattering states \\I’;?; ) were already introduced
in section 2.1. J, denotes the derivative with respect to the slowly varying
parameter a.

A relation of the S; and A; was obtained through the unitarity of the scat-
tering matrix|8, 2|.

SiA, + AfS, = % (aasjaEst - aESIaast) (3.3)
If the frozen scattering matrix is symmetric, the A; matrix is antisymme-
tric [8]. This means the first order adiabatic correction acts on the off-
diagonal entries of the frozen scattering matrix. The scattering coefficients
describing the reflection are left unchanged. So with the adiabatic correction
the § matrix is no longer symmetric. It is very useful to use the Biittiker
representation of the scattering matrix from Eq. (2.10). The antisymmetry
of A; also leads to an ansatz for the A; matrix which fits with the scattering
matrix from Eq. (2.10).

: 0 A +iA
(e @)

The parameter 6 is defined in the generic scattering matrix Eq. (2.10). The
parameters A, A € R are of further interest. The factor A is the strength
of the correction on the transmission coefficient. Due to the ansatz, A
and the transmission coefficient have the same phase. The parameter A
corresponds to a correction that is, thinking of complex number as vectors
in the complex plane, orthogonal to the transmission coefficient. To further
specify A and A we use the unitarity condition from Eq. (3.3). With
the general three parameter scattering matrix from Eq. (2.10) we find an
expression for the left hand side of Eq. (3.3).

—2|t| A 2ie"y /1 — |t]*A
SIA, + AlS, = A 14 1A (3.5)
—2ie'®\ /1 — |t|* A 2t Ay
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The adiabatic expansion 3.2. THE FIRST ORDER CONTRIBUTION (Ar)

Note that A, is not part of the unitarity condition. The right hand side of
Eq. (3.3) could also be calculated using the generic scattering matrix from
Eq. (2.10). It resembles the structure of the left hand side.

i
5 (aaslaEst - aEsjaast) -

|t ie"1\ /1 — |t|?
(O 1] 006 — Oa |t 050) i VIS 56

—ie¥\/1 — |t|? It]

It is now possible to solve for the parallel correction strength A in terms of
derivatives of parameters of the scattering matrix.

m

h
AH = § (8E |t| 3a¢> - 811 ‘t‘ 8E¢) = 2kh

(8k ’t’ 8a¢ - 8@ |t| ak¢) : (37)
We can see that A is independent of the phase ¢ and does only depend on
the derivatives of both the asymmetry of the reflection coefficients ¢ and
the transmission probability amplitude |¢|. This enables us to calculate the
correction strength A for any two leads - single channel scattering matrix.
As an example, the single rectangular barrier (see sec. 2.2) has vanishing Aj.
Nevertheless, we find a non-vanishing A for the double rectangular barrier.
So we calculate A for the two barriers scattering matrix from section 2.5.
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3.3 S; and A; for two rectangular barriers

The aim is to describe the physics of a moving shuttle. We therefore calcu-
lated the scattering matrix for a setup of two rectangular barriers of equal
height with free space in between. See section 2.5 for further details and
definition of the asymmetry parameter a. We will now consider the asym-
metry parameter a to be time dependent (e.g. a = agsin(wt)). The time
independent scattering matrix was already calculated in section 2.4 and ap-
proximated closely to the first resonance in sec. 2.5. We will use this approx-
imated version of the scattering matrix. The frozen scattering matrix Si2¢
is obtained by setting a = a(t).

To calculate the Ai-matrix we can use Eq. (3.7) where the derivatives of |¢12]
are calculated straightforwardly as
Ok |tha| = =L [tr2]* o (KL — 7)), (3.8)
da |t12] = —2v |t12]? sinh (2va) cosh (2va) . (3.9)

Calculating the derivatives of ¢ we use

Ok = ak Jaln (’”12) (3.10)

712

We calculate the derivatives of ¢ for the expression from Eq. (2.66)

Lasinh (2va)
o2 (kL — 7)? + sinh (2va)*’
vacosh (2va) (KL — )

Ogp = 2 . 3.12
¢ o2 (kL — 7)? + sinh (2va)* (3.12)

Ok = —

(3.11)

Note that these derivatives have a singularity at kL = 7 and a = 0 which
will get smoothed out if we multiply the derivatives of ¢ by those of |t12].
Using all necessary derivatives we can calculate the correction strength A.

kvL
Ay = _m ;; a |t12]2 cosh (2va) (3.13)
~m 1 1
AR -2 (3.14)

3 2
h*(2
\/ + Cosh2 2va) (kL - )2 o8 ( Ua)

The correction strength is of similar shape as |t12|. It is decreasing exponen-
tially with |av| to 0 and has a Lorentz-like shape in terms of kL centered
around kL = w. Nevertheless, it is dropping quicker to zero with both av
and kL. Further, the correction strength A is exponentially large because
it is proportional c. The correction strength is visualized in Fig. Abb. 3.1a.
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Figure 3.1: Both plots (a) and (b) display the same choice of a = 1/se®. (a)
shows _%AH and is thus a dimensionless visualization of A} for compar-
ison purposes ti2 is visualized in (b).

The sign of A indicates that for @ > 0 tunneling from the left to the right is
favored whereas tunneling from the left to the right is hindered. This effect is
probably due to the shuttle approaching the right lead and thus shortening
the gap. With a shorter gap tunneling off the island to the right lead is
favored.
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Conclusion

Resonant tunneling through a nanomechanical oscillator was studied. Start-
ing with the scattering matrix for a single rectangular barrier, the tunnel-
ing limit was discussed and the scattering matrix accordingly approximated.
Then two of these scattering matrices were combined to form a single scatter-
ing matrix that describes the tunneling process through a time-independent
nanomechanical oscillator.

¢ L >
' L+L, ! >

i

A

Figure 4.1: As can be seen in the center is a shuttle with the length L.
Nanomechanical oscillator: In the center there is the shuttle of length L.
To the left and right side are leads which are separated by a length of L +
Lg. For the shuttle not being centered, the asymmetry parameter a is the
displacement of the shuttle from the center.

Resonant tunneling for the time-independent nanomechanical oscillator was
further discussed and a resonance condition was obtained. The resonance
condition depends on two parameters: a) the wave-vector magnitude k =
V2mE/; (with E being the energy of the incoming electron and m its mass),
b) the length L of the shuttle. Further, the resonance with the smallest k at
kL = 7w was discussed. Close to the resonance the transmission probability
|t12|? is a Lorentz-function of kL; with a maximum value of one, under the
condition of the shuttle being centered between the two leads. The Lorentz-
function has exponentially small width for long and high barriers. Further,
it decreases in its maximum height and broadens with the asymmetry a of
the shuttle’s position. Leading to the value of the transmission coefficient
at kL = 7 dropping exponentially with the asymmetry of a the shuttle’s
position between the two leads.
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Conclusion

The following section focuses on the movement of the shuttle. To find an
analytical solution, we used a separation of time scales. This means that,
we assume that, the movement of the shuttle is relatively stagnant in com-
parison to the movement of the electrons through the oscillator. With this
assumption we made an adiabatic expansion in terms of the slow motion
of the shuttle. The zeroth order of the expansion: the S;-matrix is easily
calculated replacing specific time-independent parameters within the time-
independent scattering matrix with time-dependent parameters. The first
order in the adiabatic expansion is Aa where A; is an antisymmetric ma-
trix and a is the time derivative of the slowly varying parameter a(t). The
correction strength matrix A; has only one linearly independent entry: A.
When considering complex numbers as vectors in the complex plane, the
part of A that is parallel to the transmission coefficient of S; was further
discussed. For this parallel part A|| an expression in terms of the scattering
matrix S; was obtained. Finally, A was calculated for the nanomechanical
shuttle.

We assume that the orthogonal part A (corresponding to A)) of the cor-
rection strength does not influence the back actions of neither the electron
flow on the shuttles’ movement nor vice versa. With this assumption, both
the scattering matrix S; and the first order correction strength matrix A,
- presented in this work - could be used to calculate physical properties
of the nanomechanical oscillator for various electron reservoirs and various
movement patterns a(t). These properties are either backactions of resonant
tunneling electrons on the movement of the shuttle (the adiabatic reaction
forces) or backactions of the shuttle’s movement on the electron flow. In
order describe these physical properties this report presents the first step,
calculation of S; and A, for resonant tunneling through the nanomechanical
oscillator, and leads to the next step, the calculation of adiabatic reaction
forces or back-actions on the current. The adiabatic reaction forces are dis-
cussed in terms of S; and A; in a work by M. Thomas et al. [10]. Backactions
on the electron flow are discussed by M. Moskalets and M. Biittiker 8] with
a quite similar approach.
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Appendix

To show the unitarity of the scattering matrix we start of with the definition
of the scattering matrix in Eq. (2.5) and insert this definition into the left
hand side of Eq. (2.6).

st Sy = <<‘I’§X|‘I’Zx> <\I}§X|\P§X>> <<‘I’;X"I’§X> <‘I’;X"l’jL:X>>
X (U7 xIVrx) (¥ xI¥rx) (YrxI¥rx) (Yrx|¥lx)

_ (a1 a2
asn az)’
The entries a;; are given as:

ar1 = (Ui x| (197 x) (UL x|+ 9% ) (Ve x]) 195 x)
-1

= (Vhx|Vhy) =1
= (U7 x| (19 x) (P x| + PR x) (PR x]) 97 &)
= (U} x¥fx) =1

are = (Wi x| (W7 x) (Y7 x|+ [Yax) (Yax]) 97 x)
= (Tpx|T]x) =0

azt = (U7 x| (197 ) (PL x|+ [Vr ) (Prx]) [P5x)
= (U x|V x) =0.

We have used that the ]\I/R/LX> form an orthonormal basis. To show that

SxSx' =1 goes the same way using hat the | /LX> form an orthonormal
basis. This way we have prooven Eq. (2.6).
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