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1. Introduction 

 

Qubits play an important role in quantum computation and quantum information. 

Promising candidates for quantum information processing are superconducting circuits, 

which usually involve Josephson Junctions that provide the necessary nonlinearity. An 

advantage of superconducting qubits is that we have the chance to build them ourselves 

and therefore to choose parameters at our own will, while we do not have such a flexibility 

in cavity Quantum Electrodynamics (QED) [1,2]. 

Quantum error correction is also essential for realizing fault tolerant quantum computing 

[3]. In error correction, checking parity of the qubits is fundamental in a sense that it 

enables us to detect if errors occur or not [4]. One of the approaches to perform stabilizer 

measurements requires a quantum circuit with a series of the qubits. In this method, the 

information is encoded in the state of ancilla qubits and then read out. Another approach 

proposed in [5] consists in directly measuring the parity of qubits by means of microwave 

techniques without the need of a quantum circuit. This scheme is further studied and 

adopted in [6]. In [6], taking advantage of what is called a Tunable Coupling Qubit (TCQ), 

well studied and introduced by [7], any intermediate quantum circuit is removed. 

In this paper, I analyze the model in [6] with a so called ‘black box’ model and derive a 

multiport impedance, that gives the response of linear, passive, lossless and reciprocal 

systems using a method described in [8]. 

This paper begins with a brief review of the TCQ, which is followed by the necessary 

parity measurement condition to be met. In chapter 3, we introduce the circuit model of 

the measurement network and study two cases; the circuit with and without a drive port. 

Finally, I draw the conclusion in chapter 4 

 

 

2. Parity Measurement Scheme 

 

In this section, we briefly introduce the TCQ, which is exploited for parity measurement. 

We also give a review of parity measurement conditions proposed in [6].  

 

 

2.1 Tunable Coupling Qubit (TCQ) 

 

The TCQ that originally Gambetta et al. proposed consists of two transmons coupled by 

a capacitance, illustrated in Figure. 1 [7]. The idea of the TCQ is essentially that we can 

obtain more flexible qubit than a sole transmon, by encoding the qubit in the first two 
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energy levels. 

The Hamiltonian of this circuit can be derived by using the method in [9,10] and reads 

 

𝐻TCQ = ∑4𝐸𝐶±

±

(𝑛± − 𝑛𝑔±)
2
−  ∑4𝐸𝐽±

±

cos(𝜑±) +  4𝐸𝐼(𝑛+ − 𝑛𝑔+)(𝑛− − 𝑛𝑔−) (1) 

 

 

where the symmetric case is assumed in which each capacitance of ± has the same value, 

𝐸𝐶+ = 𝐸𝐶− = 𝐸𝐶 = 𝑒2 (𝐶𝐼 − 𝐶Σ) [2(𝐶Σ
2 + 2𝐶𝐼𝐶Σ)]⁄   and 𝐸𝐼 = −2𝐸𝐶 𝐶𝐼 (𝐶𝐼 + 𝐶Σ)⁄  , 

with 𝐶Σ = 𝐶 + 𝐶g . Then, we expect that in the so-called transmon regime where 

𝐸𝐽± 𝐸𝐶±⁄  is adequately large, the energy levels do not depend on the reduced gate charge 

𝑛𝑔±, resulting in the charge insensitivity as a simple transmon shows.  

Moreover, by introducing creation and annihilation operators for each transmon mode 𝑏±
†

 

and 𝑏± respectively, expanding the cosine term up to fourth order in 𝜑± and neglecting 

fast rotating terms, the Hamiltonian is second quantized 

  

𝐻TCQ𝑒𝑓𝑓 =  ∑𝜔±𝑏±𝑏±
†

±

+
𝛿±

2
𝑏±

†𝑏±
†𝑏±𝑏± + 𝐽(𝑏±𝑏±

† + 𝑏±
†𝑏±) (2) 

 

where 𝜔± = √8𝐸𝐽±𝐸𝐶± − 𝐸𝐶±, 𝛿± = −𝐸𝐶±, 𝐽 = 1 (√2)⁄ 𝐸𝐼(𝐸𝐽+𝐸𝐽− 𝐸𝐶+⁄ 𝐸𝐶−)
1 4⁄

, 

and commutation relation [𝑏±, 𝑏±
†] = 1. 

Furthermore, we approximately diagonalize the Hamiltonian by means of the unitary 

transformation 

  

𝑈TCQ = exp[𝜆(𝑏±𝑏±
† − 𝑏±

†𝑏±)] (3) 

 

with 

𝜆 = 1 2⁄ arctan(−2𝐽 𝜁⁄ ) (4) 

where we denote 𝜁 as 𝜔+ − 𝜔− − 2(𝛿+ − 𝛿−). As a result of this unitary transformation, 

we obtain the effective Hamiltonian 

 

�̃�TCQ𝑒𝑓𝑓 = 𝑈TCQ𝐻TCQ𝑈TCQ
† ≈ ∑�̃�±�̃�±

† �̃�±

±

+
𝛿±

2
�̃�±

† �̃�±
† �̃�±�̃�±

† + 𝛿𝑐�̃�+
† �̃�+�̃�−

†�̃�− (5) 

 

where �̃�± = (𝜔+ + 𝜔−) 2⁄ ± (𝜔+ − 𝜔−) cos(2𝜆) 2⁄ ∓ 𝐽 sin(2𝜆) , 𝛿± =
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(𝛿+ + 𝛿−)(1 + cos2(2𝜆)) 2⁄ ± (𝛿+ − 𝛿−) cos(2𝜆) 2⁄   and 𝛿𝑐 = (𝛿+ + 𝛿−)sin2(2𝜆) 2⁄  . 

Here, we assume that 𝛿± is much smaller than (𝜔+ − 𝜔−) [6]. 

 

 

Figure. 1 Circuit model of the TCQ (used from [6]) 

 

 

2.2 Parity Measurement condition 

 

In 2.2a, I review the general parity measurement condition of 3 qubits with two resonators, 

followed by the conditions for the system including TCQs.  

 

 

2.2a Parity Measurement Condition of 3 Qubits 

 

In the scheme in [6], the system is composed of three qubits coupled to two resonators. 

The crucial point is that only two bosonic modes are directly coupled to the common bath. 

Thus, the generic dispersive Hamiltonian of this system is written as 

 

𝐻 = ∑
Ω𝑖

2
𝜎𝑖

𝑧

3

𝑖=1

+ (𝜔1 + 𝜒1 ∑𝜎𝑖
𝑧

3

𝑖=1

)𝑎1
†𝑎1 + (𝜔2 + 𝜒2 ∑𝜎𝑖

𝑧

3

𝑖=1

)𝑎2
†𝑎2

+𝜒12 ∑𝜎𝑖
𝑧

3

𝑖=1

 (𝑎1𝑎2
† + 𝑎1

†𝑎2) (6)

 

 

Here, note that the qubit-qubit coupling is neglected because we assume the qubits to be 

off resonant. There appear not only qubit-state dependent dispersive shifts 𝜒1 and 𝜒2, 

but also qubit-state dependent coupling of the two resonators 𝜒12. This term emerges in 

the dispersive regime of multi-mode Jaynes-Cummings model, where detuning between 

the qubit frequency and the resonator frequency is much smaller than the coupling 

constant. Although some paper suggests that this term act as a quantum switch, turning 
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on and off the interaction between two cavity modes, it has a significant effect on the 

parity measurement and is not negligible when assuming that the resonators’ frequencies 

are not far away from each other [6]. In this system, the evolution of the output field 

depends on the Hamming weight by setting equal dispersive shift for each TCQ and the 

quantum switch. 

 

In addition, by introducing input-output theory of two resonators, following [10], the 

evolution of each annihilation operator dependent on the Hamming weight read 

 

𝑑𝑎1,ℎ𝑤

𝑑𝑡
=  −𝑖[𝜔1 + 𝜒1(3 − 2ℎ𝑤)]𝑎1,ℎ𝑤

− 𝜒12(3 − 2ℎ𝑤)𝑎2,ℎ𝑤

−
𝜅1

2
𝑎1,ℎ𝑤

 −
√𝜅1𝜅2

2
𝑎2,ℎ𝑤

− √𝜅1𝑏𝑖𝑛 (7)

 

 

𝑑𝑎2,ℎ𝑤

𝑑𝑡
=  −𝑖[𝜔2 + 𝜒2(3 − 2ℎ𝑤)]𝑎2,ℎ𝑤

− 𝜒12(3 − 2ℎ𝑤)𝑎1,ℎ𝑤

−
𝜅2

2
𝑎2,ℎ𝑤

−
√𝜅1𝜅2

2
𝑎1,ℎ𝑤

− √𝜅2𝑏𝑖𝑛 (8)

 

 

with the Hamming weight ℎ𝑤 = {0,1,2,3} . The output field, and correspondingly the 

reflection coefficient, depend in general on ℎ𝑤. Using the input-output theory in [6], we 

get reflection coefficient 𝑟(𝜔; ℎ𝜔) 

 

𝑟(𝜔; ℎ𝜔) = 1 − 2 (Δ𝑑1κ2 + Δ𝑑2κ1 + (3 − 2ℎ𝑤)(κ1χ1 + κ2χ2 − 2√𝜅1𝜅2χ12))

× (Δ𝑑1κ2 + Δ𝑑2κ1 + (3 − 2ℎ𝑤)(κ1χ1 + κ2χ2 − 2√𝜅1𝜅2χ12)

+ 2𝑖[Δ𝑑1Δ𝑑2 + (3 − 2ℎ𝑤)(Δ𝑑1χ1 + Δ𝑑2χ2)

+ (3 − 2ℎ𝑤)2(χ1χ2 − χ12
2)])

−1
                                      (9) 

 

with detunings Δ𝑑𝑖 = 𝜔 − 𝜔𝑖, 𝑖 = 1,2. In order to realize the parity measurement, we 

should satisfy not only the condition that the reflection coefficient depends only on the 

Hamming weight, but also that it has different values between even and odd parity; 

𝑟(𝜔; ℎ𝜔 = 0) = 𝑟(𝜔; ℎ𝜔 = 2) = 𝑟𝑒𝑣𝑒𝑛 , 𝑟(𝜔; ℎ𝜔 = 1) = 𝑟(𝜔; ℎ𝜔 = 3) = 𝑟𝑜𝑑𝑑  and 

𝑟𝑒𝑣𝑒𝑛 ≠ 𝑟𝑜𝑑𝑑. To do so, the detunings have to satisfy the following relations; 
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Δ𝑑1 = 𝜔 − 𝜔1 = ±√3√
κ1

κ2

√χ1χ2 − χ12
2 (10) 

Δ𝑑2 = 𝜔 − 𝜔2 = ∓√3√
κ1

κ2

√χ1χ2 − χ12
2 (11) 

 

Here, I point out that χ1χ2 is always smaller than 𝜒12
2  for transmons.  

From these conditions, we would say that the reflection coefficient depends on the 

Hamming weight by properly choosing the resonators’ frequencies [6]. 

 

 

2.2b Parity Measurement Condition for the System with TCQs 

 

In our scheme, a TCQ is coupled to two bosonic modes, namely, we can consider the 

Hamiltonian of the system as 

 

𝐻 = 𝐻𝑇𝐶𝑄𝑒𝑓𝑓 + ∑𝜔±𝑎±
†𝑎±

2

𝑖=1

+ ∑∑𝑔𝑖±(𝑎±𝑏±
† + H. c. )

±

2

𝑖=1

(12) 

 

with the bare coupling coefficients 𝑔𝑖± and H.c. stands for Hermitian conjugate. In order 

to obtain a form similar to Eq. 6, we will follow a similar procedure as we did in the 

subsection 2.1. I avoid the full derivation here, but the detailed derivation is written in [6]. 

In the end, we obtain the Hamiltonian 

 

𝐻 =
Ω̃−

2
𝜎𝑧 + ∑(𝜔𝑖̅̅ ̅ + 𝜒𝑖𝜎

𝑧)

2

𝑖=1

𝑎𝑖
†𝑎𝑖 + [�̅�12 + 𝜒12𝜎𝑖

𝑧] (𝑎1𝑎2
† + 𝐻. 𝑐. ), (13) 

 

where 𝜔𝑖̅̅ ̅ = 𝜔𝑖 +
𝜒𝑖,0+1−−𝜒𝑖,0+0−

2
 , 𝜒𝑖 =

𝜒𝑖,0+1−+𝜒𝑖,0+0−

2
 , �̅�12 =

𝜒12,0+1−−𝜒12,0+0−

2
  and 

𝜒12 =
𝜒12,0+1−+𝜒12,0+0−

2
  𝑖 = 1,2 , with 𝜒𝑖,0+1−

=
�̃�𝑖−

2

∆̃𝑖−
−

(√2�̃�𝑖−)
2

∆̃𝑖−+�̃�−
−

�̃�𝑖+
2

∆̃𝑖++�̃�−
 , 𝜒𝑖,0+0−

=

�̃�𝑖+
2

∆̃𝑖+
+

�̃�𝑖−
2

∆̃𝑖−
 , 𝜒12,0+1−

=
�̃�1−�̃�2−

2
(

1

∆̃1−
+

1

∆̃2−
) −

(√2�̃�1−)(√2�̃�2−)

2
(

1

∆̃1−+�̃�−
+

1

∆̃2−+�̃�−
) −
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�̃�1+�̃�2+

2
(

1

∆̃1++�̃�𝑐
+

1

∆̃2++�̃�𝑐
) and 𝜒12,0+0−

=
�̃�1+�̃�2+

2
(

1

∆̃1+
+

1

∆̃2+
) +

�̃�1−�̃�2−

2
(

1

∆̃1−
+

1

∆̃2−
)  

𝑖 = 1,2 . In addition, here, we defined ∆̃𝑖±= �̃�± − 𝜔𝑖  and  �̃�𝑖± = 𝑔𝑖+ cos(𝜆) ∓

𝑔𝑖− sin(𝜆). As we can see, we can select the parameters such that the quantum switch 

becomes zero with the TCQ. This condition is met by setting �̃�1− = 0 and �̃�2+ = 0 (or 

symmetrically, �̃�1+ = 0 and �̃�2− = 0) [6]. 

As for a possible implementation, we can select 𝜆 = 𝜋 4⁄ , in which case the coupling 

coefficient between the bare transmons is much larger than the detunings [6]. In this case, 

the coupling coefficients should satisfy the following conditions; 

 

𝑔1+ = −𝑔1− = 𝑔1, (14a) 

𝑔1+ = 𝑔2− = 𝑔2, (14b) 

 

by which we get the effective coupling coefficients �̃�1− = �̃�2+ = 0, �̃�1+ = √2𝑔1 and 

�̃�2− = √2𝑔2.Thus, the coupling coefficients need to have the sign flip, which results in 

zero 𝜒12. Later, these conditions are used to derive the multiport impedance.    

 

 

3. Multiport Impedance 

 

3.1 Impedance Representation of a Linear Lossless Reciprocal 

Multiport 

 

In our model, we assume that only lossless components are relevant and thus we consider 

the equivalent Foster circuit, which is linear, lossless and reciprocal, as depicted in 

Figure. 2. The impedance of this canonical circuit is derived in [8] and reads 

 

𝒁𝐹(𝜔) =
1

𝑗𝜔𝐶0
𝑩0 + ∑

1

𝑗𝜔𝐶𝑣

𝜔2

𝜔2 − 𝜔𝑣
2
𝑩𝑣

𝑁

𝜈=1

(15) 

 

with 

𝑩𝑣 =

[
 
 
 

𝑛𝑣1
2 𝑛𝑣1𝑛𝑣2

𝑛𝑣2𝑛𝑣1 𝑛𝑣2
2 ⋯

𝑛𝑣1𝑛𝑣𝑀

𝑛𝑣2𝑛𝑣𝑀

⋮ ⋱ ⋮
𝑛𝑣𝑀𝑛𝑣1 𝑛𝑣𝑀𝑛𝑣2 ⋯ 𝑛𝑣𝑀

2 ]
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where the 𝑛𝑣𝑖 are the turns ratios of ideal transformers. 

By exploiting this description and cleverly selecting turns ratios, we can obtain the 

impedance of our system, which realizes the parity measurement. 

 

 

Figure. 2 Foster impedance representation of the multiport (used from [8]) 

 

 

3.2 TCQ Coupled to Two Resonators Model 

 

In our model, only two modes are taken into account, so that we build the circuit model 

without a drive port (6-port model) and one with a drive port (7-port model), which can 

be intuitively understood, as shown in Figure. 4 and Figure. 5, respectively (on page 

17). In these models, three TCQs are coupled, via the coupling capacitances 𝐶𝑐𝑖, to two 

bosonic modes, which are depicted on the left. As for the 7-port model, we put an 

additional port on the right coupled to two bosonic modes via the capacitance 𝐶𝑡. For 

simplicity, I assume that the capacitances in each TCQ are symmetric as explained in 

subsection 2.1. In addition, the coupling capacitances 𝐶𝑐𝑖 coupled to each TCQ are also 

the same. In the next sections, we drive the multiport impedance of these models.   

 

 

3.3 6-port Impedance of the Circuit (without a Drive Port) 

 

3.3a Parity Measurement Conditions in the model without a Drive Port 

 

The model of the circuit without a drive port is shown in Figure. 4. To derive the 

conditions of turns ratios that satisfy the sign flip discussed in 2.2b, we derive the 
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Hamiltonian of the system, which is calculated in detail in Appendix A.  

The calculation in Appendix gives the Hamiltonian 

 

𝐻6𝑝𝑜𝑟𝑡𝑠 = ∑
𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖

2∆𝑖
𝑞𝐽+

2

3

𝑖=1

+
𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖

2∆𝑖
𝑞𝐽−

2 +
𝐶𝐼𝑖

∆𝑖
(𝑞𝐽+ − 𝑞𝐽−)

2

−
𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐴𝑖 + 𝛼2𝑖,1𝐵𝑖)𝑞𝐽𝑖+𝑞𝑟1

−
𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐴𝑖 + 𝛼2𝑖,2𝐵𝑖)𝑞𝐽𝑖+𝑞𝑟2

−
𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐵𝑖 + 𝛼2𝑖,1𝐴𝑖)𝑞𝐽𝑖−𝑞𝑟1

−
𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐵𝑖 + 𝛼2𝑖,2𝐴𝑖)𝑞𝐽𝑖−𝑞𝑟2 

+
1

2𝐶1
𝑞𝑟1

2 +
1

2𝐶2
𝑞𝑟2

2 +
1

2𝐿1
Φ𝑟1

2 +
1

2𝐿2
Φ𝑟2

2 

−
1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

𝑞𝑟1𝑞𝑟2 

− ∑𝐸𝐽𝑖+ cos (
2𝜋Φ𝐽𝑖+

Φ0
)

3

𝑖=1

+ 𝐸𝐽𝑖− cos (
2𝜋Φ𝐽𝑖−

Φ0
) (A8) 

 

where ∆𝑖= (𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)
2
− 𝐶𝐼𝑖

2
 , 𝐴𝑖 = 𝐶𝐽𝑖(𝐶𝐽𝑖 + 2𝐶𝐼𝑖)(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)  and  𝐵𝑖 =

𝐶𝐽𝑖𝐶𝐼𝑖(𝐶𝐽𝑖 + 2𝐶𝐼𝑖) . Furthermore, I calculate the coupling coefficients 𝑔𝑖±
𝑘  , where 

superscript 𝑘 implies the TCQ, by introducing the annihilation and creation operators of 

both the harmonic oscillator modes and the transmons as Duffing oscillators. Then we 

obtain 

 

𝑔1+
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶1∆𝑘
2 (𝛼2𝑘−1,1𝐴𝑘 + 𝛼2𝑘,1𝐵𝑘)√

ℏ𝐶1𝜔1

2
(

𝐸𝐽𝑘+

32𝐸𝐶𝑘
)

1
4

(16a) 

𝑔1−
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶1∆𝑘
2 (𝛼2𝑘−1,1𝐵𝑘 + 𝛼2𝑘,1𝐴𝑘)√

ℏ𝐶2𝜔2

2
(

𝐸𝐽𝑘−

32𝐸𝐶𝑘
)

1
4

(16b) 
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𝑔2+
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶2∆𝑘
2 (𝛼2𝑘−1,2𝐴𝑘 + 𝛼2𝑘,2𝐵𝑘)√

ℏ𝐶1𝜔1

2
(

𝐸𝐽𝑘+

32𝐸𝐶𝑘
)

1
4

(16c) 

𝑔2−
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶2∆𝑘
2 (𝛼2𝑘−1,2𝐵𝑘 + 𝛼2𝑘,2𝐴𝑘)√

ℏ𝐶2𝜔2

2
(

𝐸𝐽𝑘−

32𝐸𝐶𝑘
)

1
4

(16d) 

 

In order to achieve zero 𝜒12, from subsection 2.2b, the Eq. 14 are needed. On the other 

hand, we can also delete 𝜒12 by the following settings; 

 

𝑔1+
𝑘 = −𝑔1−

𝑘 (17a) 

𝑔2+
𝑘 = 𝑔2−

𝑘 (17b) 

 

Thus, using these relations, we finally obtain the conditions. 

 

𝛼2𝑘−1,1 = −𝛼2𝑘,1, (18a) 

𝛼2𝑘−1,2 = 𝛼2𝑘,2 (18b) 

 

Here, we point out that these conditions make mode-mode coupling term, i.e. 

−
1

𝐶1𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3
𝑖=1  zero. Therefore, we would say that the two 

resonators do not interact with each other in this model. 

 

 

3.3b Estimate for Parity Measurement 

 

From the conditions we derived in the previous subsection, we can choose 𝛼2𝑘−1,1 =

−𝛼2𝑘,1 = 1 and 𝛼2𝑘−1,2 = 𝛼2𝑘,2 = 1.  The coupling coefficients then become   

 

𝑔1+
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶1∆𝑘
2
(𝐴𝑘 − 𝐵𝑘)√

ℏ𝐶1𝜔1

2
(

𝐸𝐽𝑘+

32𝐸𝐶𝑘
)

1
4

(19a) 

𝑔1−
𝑘 = −2𝑒

𝐶𝑐𝑘

𝐶1∆𝑘
2
(𝐴𝑘 − 𝐵𝑘)√

ℏ𝐶2𝜔2

2
(

𝐸𝐽𝑘−

32𝐸𝐶𝑘
)

1
4

(19b) 
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𝑔2+
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶2∆𝑘
2
(𝐴𝑘 + 𝐵𝑘)√

ℏ𝐶1𝜔1

2
(

𝐸𝐽𝑘+

32𝐸𝐶𝑘
)

1
4

(19c) 

𝑔2−
𝑘 = 2𝑒

𝐶𝑐𝑘

𝐶2∆𝑘
2
(𝐴𝑘 + 𝐵𝑘)√

ℏ𝐶2𝜔2

2
(

𝐸𝐽𝑘−

32𝐸𝐶𝑘
)

1
4
. (19d) 

 

Thus, consequently, the dispersive shifts are calculated 

 

𝜒1 =
�̃�𝑖+

2

2

𝛿𝑐

∆̃1+(∆̃1+ + 𝛿𝑐)
(20a) 

𝜒2 = �̃�2−
2 𝛿−

∆̃2−(∆̃2− + 𝛿−)
(20b) 

 

where  �̃�1+ = √2𝑔1+
𝑘   and �̃�2− = √2𝑔2−

𝑘   . Note that we consider the case 𝜆 = 𝜋 4⁄  

here. 

Now, we give an example of these terms qualitatively. In these conditions with the same 

decay rate κ1 = 𝜅2, we choose the energy level between the ground state and the first 

excited state as �̃�±/2π = 6000MHz, the coupling parameter 𝐽/2𝜋 = −400 MHz, the 

anharmonicity δ/2π = −𝐸𝐶/2𝜋 = −300 MHz and the resonator frequency ω1/2π =

7500 MHz. In addition, selecting the capacitances’ value 𝐶J = 50 fF, 𝐶c = 10 fF, 𝐶I =

40 fF  and 𝐶1 = 424 fF , we obtain the coupling coefficients �̃�1+ = 86 MHz  and 

�̃�2− = 185 MHz and therefore dispersive shifts 𝜒1 = 1.46 MHz and 𝜒2 = 4.88 MHz. 

At this point, I firstly calculate the coupling coefficients and dispersive shift assuming 

that ω1 = ω2 . Afterwards, I update the resonator frequency ω2/2π = ω1/2π +

2√3χ1𝜒2  and recalculate these values to check the validity.  

 

Furthermore, we confirm whether the parity measurement can be done with this model. 

In this calculation, I select the following parameters listed in the Table. 1. Here I set the 

capacitances such that we obtain the same dispersive shifts χ1 and χ2, for all TCQs. As 

for the decay rate κ1  and κ2 , I choose κ1 = 𝜅2 = −2√𝜒1𝜒2 , which gives optimal 

information in terms of information gain [6]. In Figure. 3, we clearly see that 

𝑟(𝜔; ℎ𝜔 = 0) = 𝑟(𝜔; ℎ𝜔 = 2) = 𝑟𝑒𝑣𝑒𝑛 , 𝑟(𝜔; ℎ𝜔 = 1) = 𝑟(𝜔; ℎ𝜔 = 3) = 𝑟𝑜𝑑𝑑  and 

𝑟𝑒𝑣𝑒𝑛 ≠ 𝑟𝑜𝑑𝑑, when 𝜔 = 𝜔1 + √3√χ1χ2 = 𝜔2 − √3√χ1χ2 = 2𝜋(75048 MHz). 
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Figure. 3(a) Real part of the reflection coefficient depending on the Hamming weight 

 

 

Figure. 3(b) Imaginary part of the reflection coefficient depending on the Hamming 

weight 

 

Figure. 3 The difference of reflection coefficients depending on the parity. 
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Table.1 The list of parameters to check the parity measurement 

 

 

3.3c 6-port Impedance 

 

In the previous subsection, we understood that the parity measurement condition can be 

fulfilled by the model. Thus, we take the next step to derive the impedance of this model. 

Following the formula Eq.15, we can derive the 6-port impedance    

 

𝑍6𝑝𝑜𝑟𝑡𝑠(𝜔) = ∑
1

𝑗𝜔𝐶𝑣

𝜔2

𝜔2 − 𝜔𝑣
2
𝑩𝑣

2

𝜈=1

(21)  

 

with  𝑩1 =

[
 
 
 
 
 

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1

1 −1 1 −1 1 −1

−1 1 −1 1 −1 1 ]
 
 
 
 
 

 and 𝑩2 =

[
 
 
 
 
 
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1]

 
 
 
 
 

. 

 

 

3.4 7-port Impedance of the circuit (with a Drive Port) 

 

3.4a Parity Measurement Conditions in the model with a Drive Port 

 

The model of the circuit with a drive port is shown in Figure. 5. Here, a similar procedure 

of 3.3a is done to derive the Hamiltonian of the system. In Appendix B, the detailed 

calculation is given. Then, the Hamiltonian of the system reads 

 

ωTCQ/2π [MHz] CJ  [fF] Cc  [fF] CI  [fF] χ1/2π [MHz] χ2/2π [MHz]

TCQa 6000 50.0 10.2 40.0 -1.5 -5.0

TCQb 5800 50.8 12.4 38.5 -1.5 -5.0

TCQc 5600 51.0 14.8 37.0 -1.5 -5.0

J /2π [MHz] -400 C1  [fF] 424.4 κ1/2π [MHz] 5.5

δc/2π [MHz] -300 C2  [fF] 423.8 κ2/2π [MHz] 5.5

ω1/2π [MHz] 7500

ω2/2π [MHz] 7510
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𝐻7𝑝𝑜𝑟𝑡𝑠 = 𝐻6𝑝𝑜𝑟𝑡𝑠 + [−
𝛽1

𝐶1
+

1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

] 𝑞𝑟1𝑞𝑑

+ [−
𝛽2

𝐶2
+

1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

] 𝑞𝑟2𝑞𝑑

+ [
1

𝐶𝑡
−

𝛽1
2

2𝐶1
2
(1 − 𝐶𝑡𝛽1

2) −
𝛽2

2

2𝐶2
2
(1 − 𝐶𝑡𝛽2

2)

+
𝛽1𝛽2

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

] 𝑞𝑑
2

+ ∑−[
𝛽1𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐴𝑖 + 𝛼2𝑖,1𝐵𝑖)

3

𝑖=1

+
𝛽2𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐴𝑖 + 𝛼2𝑖,2𝐵𝑖)] 𝑞𝐽𝑖+𝑞𝑑

− [
𝛽1𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐵𝑖 + 𝛼2𝑖,1𝐴𝑖)

+
𝛽2𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐵𝑖 + 𝛼2𝑖,2𝐴𝑖)] 𝑞𝐽𝑖−𝑞𝑑                                            (b24) 

 

Additionally, we require 𝜒12 = 0 , that is, 𝛼2𝑘−1,1 = −𝛼2𝑘,1  and 𝛼2𝑘−1,2 = 𝛼2𝑘,2 , we 

can rewrite the Hamiltonian as 

 

𝐻7𝑝𝑜𝑟𝑡𝑠 = 𝐻6𝑝𝑜𝑟𝑡𝑠 −
𝛽1

𝐶1
𝑞𝑟1𝑞𝑑 −

𝛽2

𝐶2
𝑞𝑟2𝑞𝑑

+ [
1

𝐶𝑡
−

𝛽1
2

2𝐶1
2
(1 − 𝐶𝑡𝛽1

2) −
𝛽2

2

2𝐶2
2
(1 − 𝐶𝑡𝛽2

2)] 𝑞𝑑
2

+ ∑−[
𝛽1𝐶𝑐𝑖

𝐶1∆𝑖
2
(𝐴𝑖 − 𝐵𝑖) +

𝛽2𝐶𝑐𝑖

𝐶2∆𝑖
2
(𝐴𝑖 + 𝐵𝑖)] 𝑞𝐽𝑖+𝑞𝑑

3

𝑖=1

− [−
𝛽1𝐶𝑐𝑖

𝐶1∆𝑖
2
(𝐴𝑖 − 𝐵𝑖) +

𝛽2𝐶𝑐𝑖

𝐶2∆𝑖
2
(𝐴𝑖 + 𝐵𝑖)] 𝑞𝐽𝑖−𝑞𝑑         (22) 

 

Here, I note that the existence of a drive port does not change the Hamiltonian of the 

configuration in 3.3a. In addition, this result suggests that the driving can modify TCQs 
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as well as modes, which makes sense, considering the fact that we can perform single-

qubits gates even if the drive is coupled physically only to the resonators. Furthermore, 

by setting the turns ratios of 7th port 𝛽1 and 𝛽2, we will have the effect of drive on 

TCQs similar to resonators’ modes. 

 

 

3.4b 7-port Impedance 

 

As we did in the section 3.3c, we calculate the 7-port impedance. For simplicity, we set 

𝛽1 = 𝛽2 = 1, and the impedance of the system reads 

 

𝑍7𝑝𝑜𝑟𝑡𝑠(𝜔) = ∑
1

𝑗𝜔𝐶𝑣

𝜔2

𝜔2 − 𝜔𝑣
2
𝑩𝑣

2

𝜈=1

 (23) 

 

with  𝑩1 =

[
 
 
 
 
 
 

1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 ]
 
 
 
 
 
 

 and 𝑩2 =

[
 
 
 
 
 
 
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1]

 
 
 
 
 
 

. 

 

 

 

3.5 Expansion of 7-port Impedance in the Wide Range  

 

In this section, we expand the range of the impedance, which we calculated in the former 

sections. The element of the multiport impedance is defined as  

 

𝑍𝑖𝑗 =
𝑉𝑖

𝐼𝑗
|
𝐼𝑘=0 for k≠j

. (24) 

 

That is to say, 𝑍𝑖𝑗 can be obtained by driving port 𝑗 with the current 𝐼𝑗, while all other 

ports are open, i.e. 𝐼𝑘 = 0 for k ≠ j [11]. 

Now, from this definition, we can extend the range of the impedance including the 

coupling capacitances 𝐶𝑐  and 𝐶𝑡 , depicted in Figure. 6. Consequently, the 7-port 
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impedance reads 

  

𝒁′
7𝑝𝑜𝑟𝑡𝑠(𝜔) = −

1

𝑗𝜔
𝑩0 + ∑

1

𝑗𝜔𝐶𝑣

𝜔2

𝜔2 − 𝜔𝑣
2
𝑩𝑣

2

𝜈=1

(25) 

 

with 𝑩0 =

[
 
 
 
 
 
 
1/Cc1 0 0 0 0 0 0

0 1/Cc1 0 0 0 0 0

0 0 1/Cc2 0 0 0 0

0 0 0 1/Cc2 0 0 0

0 0 0 0 1/Cc3 0 0

0 0 0 0 0 1/Cc3 0

0 0 0 0 0 0 1/Ct]
 
 
 
 
 
 

,  

𝑩1 =

[
 
 
 
 
 
 

1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 ]
 
 
 
 
 
 

 and 𝑩2 =

[
 
 
 
 
 
 
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1]

 
 
 
 
 
 

. 

 

 

4 Conclusion 

 

In this paper, we derived the multiport impedance of the specific parity measurement 

network, where TCQs are used to delete unwanted quantum switch terms and coupled to 

two resonators. By imposing on our circuit models the parity conditions proposed in [6], 

the parity measurement can be done successfully. Therefore, the impedance derived from 

the circuit models will also provide the response of the system.  

In addition, in the process of the calculation, we see that the two resonators do not interact 

at all with each other under the sign flip condition. We also obtain the outcome that the 

existence of the drive port does not change the Hamiltonian of the circuit without a drive 

port, while we still can have interaction of driving with TCQs and modes. 

To sum up, I hope this work will help to acquire more understanding of the way to make 

better superconducting qubits and eventually to realize the fault tolerant quantum 

computing.  
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Figure. 4 Circuit model without a drive port 

 

 

Figure. 5 Circuit model with a drive port. The TL in the lower right stands for 

Transmission line. 
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Figure. 6 Circuit model with a drive port in a wider range. 
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Appendix 

 

Appendix A the Hamiltonian of the Circuit without a Drive Port 

 

 

In this appendix, we calculate the Hamiltonian of the model of the circuit without a drive 

port, from which we can determine the conditions to obtain zero 𝜒12. The model circuit 

is shown in Figure. 4. In this configuration, the Lagrangian can be written as 

 

ℒ6𝑝𝑜𝑟𝑡𝑠 = ∑
𝐶𝐽𝑖

2
Φ̇𝐽𝑖+

2
3

𝑖=1

+
𝐶𝐽𝑖

2
Φ̇𝐽𝑖−

2
+

𝐶𝐼𝑖

2
(Φ̇𝐽𝑖+ − Φ̇𝐽𝑖−)

2

+
𝐶𝑐𝑖

2
(Φ̇𝐽𝑖+ + 𝛼2𝑖−1,1Φ̇𝑟1 + 𝛼2𝑖−1,2Φ̇𝑟2)

2

+
𝐶𝑐𝑖

2
(Φ̇𝐽𝑖− + 𝛼2𝑖,1Φ̇𝑟1 + 𝛼2𝑖,2Φ̇𝑟2)

2
+ ∑

𝐶𝑘

2
Φ̇𝑘

2
−

1

2𝐿𝑘
Φ𝑟𝑘

2

2

𝑘=1

+ ∑𝐸𝐽𝑖+ cos (
2𝜋Φ𝐽𝑖+

Φ0
) + 𝐸𝐽𝑖+ cos (

2𝜋Φ𝐽𝑖−

Φ0
)

3

𝑖=1

                      (A1) 

 

where Φ0  is flux quantum given by Φ0 =
ℎ

2𝑒0
 . In addition, the subscript of this 

Hamiltonian comes from the fact that we will derive a 6 by 6 matrix in the end.  

The canonical momenta are given by  

 

𝑞𝐽𝑖+ ≡
𝛿ℒ

δΦ̇𝐽𝑖+

= 𝐶𝐽𝑖Φ̇𝐽+ + 𝐶𝐼𝑖(Φ̇𝐽𝑖+ − Φ̇𝐽𝑖−) + 𝐶𝑐𝑖(Φ̇𝐽𝑖+ + 𝛼2𝑖−1,1Φ̇𝑟1 + 𝛼2𝑖−1,2Φ̇𝑟2), (A2a) 

 

𝑞𝐽𝑖− ≡
𝛿ℒ

δΦ̇𝐽𝑖−

= CJiΦ̇𝐽𝑖− − 𝐶𝐼𝑖(Φ̇𝐽𝑖+ − Φ̇𝐽𝑖−) + 𝐶𝑐𝑖(Φ̇𝐽𝑖− + 𝛼2𝑖,1Φ̇𝑟1 + 𝛼2𝑖,2Φ̇𝑟2), (A2b) 

 

𝑞𝑟1 ≡
𝛿ℒ

δΦ̇𝑟1

= C1Φ̇𝑟1 + ∑𝐶𝑐𝑖

3

𝑖=1

𝛼2𝑖−1,1(Φ̇𝐽𝑖+ + 𝛼2𝑖−1,1Φ̇𝑟1 + 𝛼2𝑖−1,2Φ̇𝑟2)

+ 𝐶𝑐𝑖𝛼2𝑖,1(Φ̇𝐽𝑖− + 𝛼2𝑖,1Φ̇𝑟1 + 𝛼2𝑖,2Φ̇𝑟2),                                              (A2c) 
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𝑞𝑟2 ≡
𝛿ℒ

δΦ̇𝑟2

= C2Φ̇𝑟2 + ∑𝐶𝑐𝑖

3

𝑖=1

𝛼2𝑖−1,2(Φ̇𝐽𝑖+ + 𝛼2𝑖−1,1Φ̇𝑟1 + 𝛼2𝑖−1,2Φ̇𝑟2)

+ 𝐶𝑐𝑖𝛼2𝑖,2(Φ̇𝐽𝑖− + 𝛼2𝑖,1Φ̇𝑟1 + 𝛼2𝑖,2Φ̇𝑟2)                                            (A2d) 

 

Thus, the Hamiltonian is then derived as the Legendre transform 

𝐻 = ∑𝑞𝐽𝑖+Φ̇𝐽𝑖+ + 𝑞𝐽𝑖−Φ̇𝐽𝑖−

3

i=1

+ ∑ 𝑞𝑟𝑘Φ̇𝑟𝑘

2

𝑘=1

− ℒ (𝐴3) 

 

Here I introduce the matrix form of the Hamiltonian, namely, 

 

𝒒 = 𝑪𝟔𝒑𝒐𝒓𝒕𝒔�̇� (A4) 

 

with 𝒒 =

[
 
 
 
 
 
 
 
𝑞𝐽1+

𝑞𝐽1−

𝑞𝐽2+

𝑞𝐽2−

𝑞𝐽3+

𝑞𝐽3−

𝑞𝑟1

𝑞𝑟2 ]
 
 
 
 
 
 
 

 and �̇� =

[
 
 
 
 
 
 
 
 
 
Φ̇𝐽1+

Φ̇𝐽1−

Φ̇𝐽2+

Φ̇𝐽2−

Φ̇𝐽3+

Φ̇𝐽3−

Φ̇𝑟1

Φ̇𝑟2 ]
 
 
 
 
 
 
 
 
 

.  

In addition, 𝑪𝟔𝒑𝒐𝒓𝒕𝒔 = [
𝑨 𝑩
𝑩𝑇 𝑫

]  with 𝑨 = [
𝑨𝟏 0 0
0 𝑨𝟐 0
0 0 𝑨3

]   𝑩 = [
𝑩𝟏

𝑩𝟐

𝑩𝟑

]  and 𝑫 =

[
𝐶1 + ∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1

2 + 𝛼2𝑖,1
23

𝑖=1 ) ∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)
3
𝑖=1

∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)
3
𝑖=1 𝐶2 + ∑ 𝐶𝑐𝑖(𝛼2𝑖−1,2

2 + 𝛼2𝑖,2
2 )3

𝑖=1

] , where 

𝑨𝒊 = [
𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖 −𝐶𝐼𝑖

−𝐶𝐼𝑖 𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖
] and 𝑩𝒊 = [

𝐶𝑐𝑖𝛼2𝑖−1,1 𝐶𝑐𝑖𝛼2𝑖−1,2

𝐶𝑐𝑖𝛼2𝑖,1 𝐶𝑐𝑖𝛼2𝑖,2
]. 

 

In order to invert the capacitance matrix 𝑪, we implement Block Matrix Inversion, that 

is, 

 

𝑪−𝟏 = [
𝑨−𝟏 + 𝑨−𝟏𝑩(𝑫 − 𝑩𝑻𝑨−𝟏𝑩)−𝟏𝑩𝑇𝑨−𝟏 −𝑨−𝟏𝑩(𝑫 − 𝑩𝑻𝑨−𝟏𝑩)−𝟏

−(𝑫 − 𝑩𝑻𝑨−𝟏𝑩)−𝟏𝑩𝑇𝑨−𝟏 (𝑫 − 𝑩𝑻𝑨−𝟏𝑩)−𝟏 ] (A5) 

 

from which we obtain the inverse of the capacitance matrix 
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𝑪𝟔𝒑𝒐𝒓𝒕
−𝟏 = [

𝑨′ 𝑩′

𝑩′𝑻 𝑫′] (A6) 

 

where 𝑨′ = [

𝑨′𝟏 0 0

0 𝑨′𝟐 0

0 0 𝑨′3

]  𝑩′ = [

𝑩′𝟏
𝑩′𝟐
𝑩′𝟑

]  and 𝑫 =

[

1

𝐶1
(1 −

1

𝐶1
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1

2 + 𝛼2𝑖,1
23

𝑖=1 )) −
1

𝐶1𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3
𝑖=1

−
1

𝐶1𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2

3
𝑖=1 )

1

𝐶2
(1 −

1

𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,2

2 + 𝛼2𝑖,2
2 ))3

𝑖=1

]

, with 𝑨′𝒊 = [

𝐶𝐽𝑖+𝐶𝐼𝑖+𝐶𝑐𝑖

Δ𝑖

𝐶𝐼𝑖

Δ𝑖

𝐶𝐼𝑖

Δ𝑖

𝐶𝐽𝑖+𝐶𝐼𝑖+𝐶𝑐𝑖

Δ𝑖

]   Δ𝑖 = (𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)
2
− 𝐶𝐼𝑖

2  and 𝑩′𝒊 =

[
−

𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,1𝐶𝐼𝑖} −

𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,2𝐶𝐼𝑖}

−
𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1𝐶𝐼𝑖 + 𝛼2𝑖,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)} −

𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2𝐶𝐼𝑖 + 𝛼2𝑖,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)}

]

. 

 

At this point, we make a weak coupling assumption, neglecting the terms of product of 

coupling capacitances over other capacitances, i.e., 𝐶𝑐𝑘𝐶𝑐𝑙 𝐶⁄
𝑚

  and employing the 

Taylor expansion. Consequently, the canonical coordinate 𝚽 can be written in terms of 

canonical momenta 𝒒 as 

 

Φ̇𝐽𝑖+ =
𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖

Δ𝑖
𝑞𝐽𝑖+ +

𝐶𝐼𝑖

Δ𝑖
𝑞𝐽𝑖− −

𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,1𝐶𝐼𝑖}𝑞𝑟1

−
𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,2𝐶𝐼𝑖}𝑞𝑟2,                              (A7a) 

 

Φ̇𝐽𝑖− =
𝐶𝐼𝑖

Δ𝑖
𝑞𝐽𝑖+ +

𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖

Δ𝑖
𝑞𝐽𝑖− −

𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1𝐶𝐼𝑖 + 𝛼2𝑖,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)}𝑞𝑟1

−
𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2𝐶𝐼𝑖 + 𝛼2𝑖,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)}𝑞𝑟2,                              (A7b) 
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Φ̇𝑟1 =
1

𝐶1
(1 −

1

𝐶1
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1

2 + 𝛼2𝑖,1
2

3

𝑖=1

))𝑞𝑟1

−
1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

𝑞𝑟2

+ ∑−
𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,1𝐶𝐼𝑖}𝑞𝐽𝑖+

3

𝑖=1

−
𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1𝐶𝐼𝑖 + 𝛼2𝑖,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)}𝑞𝐽𝑖− ,                   (A7c) 

 

Φ̇𝑟2 =
1

𝐶2
(1 −

1

𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,2

2 + 𝛼2𝑖,2
2 ))

3

𝑖=1

𝑞𝑟2

−
1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2

3

𝑖=1

)𝑞𝑟1

+ ∑−
𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,2𝐶𝐼𝑖}𝑞𝐽𝑖+

3

𝑖=1

−
𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2𝐶𝐼𝑖 + 𝛼2𝑖,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)}𝑞𝐽𝑖−            (A7d) 

 

Substituting Eq. A7 and again assuming a weak coupling, we obtain the Hamiltonian 

 

𝐻6𝑝𝑜𝑟𝑡𝑠 = ∑
𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖

2∆𝑖
𝑞𝐽+

2

3

𝑖=1

+
𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖

2∆𝑖
𝑞𝐽−

2 +
𝐶𝐼𝑖

∆𝑖
(𝑞𝐽+ − 𝑞𝐽−)

2

−
𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐴𝑖 + 𝛼2𝑖,1𝐵𝑖)𝑞𝐽𝑖+𝑞𝑟1

−
𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐴𝑖 + 𝛼2𝑖,2𝐵𝑖)𝑞𝐽𝑖+𝑞𝑟2

−
𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐵𝑖 + 𝛼2𝑖,1𝐴𝑖)𝑞𝐽𝑖−𝑞𝑟1

−
𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐵𝑖 + 𝛼2𝑖,2𝐴𝑖)𝑞𝐽𝑖−𝑞𝑟2 
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+
1

2𝐶1
𝑞𝑟1

2 +
1

2𝐶2
𝑞𝑟2

2 +
1

2𝐿1
Φ𝑟1

2 +
1

2𝐿2
Φ𝑟2

2 

−
1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

𝑞𝑟1𝑞𝑟2 

− ∑𝐸𝐽𝑖+ cos (
2𝜋Φ𝐽𝑖+

Φ0
)

3

𝑖=1

+ 𝐸𝐽𝑖− cos (
2𝜋Φ𝐽𝑖−

Φ0
) (A8) 

 

where ∆𝑖= (𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)
2
− 𝐶𝐼𝑖

2
 , 𝐴𝑖 = 𝐶𝐽𝑖(𝐶𝐽𝑖 + 2𝐶𝐼𝑖)(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)  and  𝐵𝑖 =

𝐶𝐽𝑖𝐶𝐼𝑖(𝐶𝐽𝑖 + 2𝐶𝐼𝑖). Here, since the resonator capacitances 𝐶1 and 𝐶2 are approximately 

50 times larger than the coupling capacitance, I also neglect the term  𝐶𝑐 𝐶⁄
𝑘
, 𝑘 = 1,2. 

 

 

Appendix B the Hamiltonian of the Circuit without a Drive Port 

 

In this section, we calculate the Hamiltonian of the model with a drive port to extend the 

discussion to the 7 by 7 matrix as we did in the Appendix A. The system is illustrated in 

Figure. 5. Here I assume that the transmission line in the drive port does not have effect 

on this circuit and thus I neglect this part. The Lagrangian is written as 

  

ℒ7𝑝𝑜𝑟𝑡𝑠 = ℒ6𝑝𝑜𝑟𝑡𝑠 + ℒ𝑇𝐿 +
𝐶𝑡

2
(Φ̇𝑑 + 𝛽1Φ̇𝑟1 + 𝛽2Φ̇𝑟2)

2
(B1) 

 

and the canonical momenta as 

 

𝑞𝑑 ≡
𝛿ℒ

δΦ̇𝑑

= 𝐶𝑡(Φ̇𝑑 + 𝛽1Φ̇𝑟1 + 𝛽2Φ̇𝑟2) (B2a) 

 

𝑞𝑟1 ≡
𝛿ℒ

δΦ̇𝑟1

= C1Φ̇𝑟1 + 𝐶𝑡𝛽1(Φ̇𝑑 + 𝛽1Φ̇𝑟1 + 𝛽2Φ̇𝑟2)

+ ∑𝐶𝑐𝑖

3

𝑖=1

𝛼2𝑖−1,1(Φ̇𝐽𝑖+ + 𝛼2𝑖−1,1Φ̇𝑟1 + 𝛼2𝑖−1,2Φ̇𝑟2)

+ 𝐶𝑐𝑖𝛼2𝑖,1(Φ̇𝐽𝑖− + 𝛼2𝑖,1Φ̇𝑟1 + 𝛼2𝑖,2Φ̇𝑟2)                                             (B2b) 
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𝑞𝑟2 ≡
𝛿ℒ

δΦ̇𝑟2

= C2Φ̇𝑟2 + 𝐶𝑡𝛽2(Φ̇𝑑 + 𝛽1Φ̇𝑟1 + 𝛽2Φ̇𝑟2)

+ ∑𝐶𝑐𝑖

3

𝑖=1

𝛼2𝑖−1,2(Φ̇𝐽𝑖+ + 𝛼2𝑖−1,1Φ̇𝑟1 + 𝛼2𝑖−1,2Φ̇𝑟2)

+ 𝐶𝑐𝑖𝛼2𝑖,2(Φ̇𝐽𝑖− + 𝛼2𝑖,1Φ̇𝑟1 + 𝛼2𝑖,2Φ̇𝑟2)                                            (B2c) 

 

with Eq. A2a and A2b.  

In analogy with Appendix A, I introduce the matrix form and the capacitance matrix reads 

 

𝑪𝟕𝒑𝒐𝒓𝒕𝒔 = [
𝑪′

𝟔𝒑𝒐𝒓𝒕𝒔 𝑬

𝑬𝑻 𝐶𝑡

] (B3) 

 

where 𝑪′
𝟔𝒑𝒐𝒓𝒕𝒔 = 𝑪𝟔𝒑𝒐𝒓𝒕𝒔 + [

𝟎 𝟎
𝟎 𝑭

]  with 𝑭 = [
𝐶𝑡𝛽1

2 𝐶𝑡𝛽1𝛽2

𝐶𝑡𝛽1𝛽2 𝐶𝑡𝛽2
2 ]  and 𝑬 =

[0 0 0 0 0 0 𝐶𝑡𝛽1 𝐶𝑡𝛽2]
𝑻. Following Eq. A5, assuming a weak coupling and 

employing the Taylor expansion, the inverse of the capacitance matrix becomes 

  

𝑪𝟕𝒑𝒐𝒓𝒕𝒔
−𝟏 = [

𝑪𝟔𝒑𝒐𝒓𝒕𝒔
−𝟏 𝑬′

𝑬′𝑻
1

𝐶𝑡

] (B4) 

 

with 𝑬′ = [𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆′]𝑻 , where 𝒆𝒊 =

[

𝛽1𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,1𝐶𝐼𝑖} +

𝛽2𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖) + 𝛼2𝑖,2𝐶𝐼𝑖}

𝛽1𝐶𝑐𝑖

𝐶1Δ𝑖
{𝛼2𝑖−1,1𝐶𝐼𝑖 + 𝛼2𝑖,1(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)} +

𝛽2𝐶𝑐𝑖

𝐶2Δ𝑖
{𝛼2𝑖−1,2𝐶𝐼𝑖 + 𝛼2𝑖,2(𝐶𝐽𝑖 + 𝐶𝐼𝑖 + 𝐶𝑐𝑖)}

 ]

𝑻

 

and 𝒆𝒊 =

[
−

𝛽1

𝐶1
(1 −

1

𝐶1
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1

2 + 𝛼2𝑖,1
23

𝑖=1 )) +
𝛽2

𝐶1𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3
𝑖=1

𝛽1

𝐶1𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2) −3

𝑖=1
𝛽2

𝐶2
(1 −

1

𝐶2
∑ 𝐶𝑐𝑖(𝛼2𝑖−1,2

2 + 𝛼2𝑖,2
2 ))3

𝑖=1

 ]

𝑻

 

 

Note that in the weak coupling assumption, I also assume 𝐶𝑡 as a small capacitance. 

Then, substituting the canonical coordinates 𝚽 in terms of canonical momenta 𝒒 into 

the Hamiltonian, 

 



25 

 

𝐻7𝑝𝑜𝑟𝑡𝑠 = ∑𝑞𝐽𝑖+Φ̇𝐽𝑖+ + 𝑞𝐽𝑖−Φ̇𝐽𝑖−

3

i=1

+ ∑ 𝑞𝑟𝑘Φ̇𝑟𝑘

2

𝑘=1

+ 𝑞𝑑Φ̇𝑑 − ℒ7𝑝𝑜𝑟𝑡𝑠 (B5) 

 

we obtain the Hamiltonian 

 

 

𝐻7𝑝𝑜𝑟𝑡𝑠 = 𝐻6𝑝𝑜𝑟𝑡𝑠 + [−
𝛽1

𝐶1
+

1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

] 𝑞𝑟1𝑞𝑑

+ [−
𝛽2

𝐶2
+

1

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

] 𝑞𝑟2𝑞𝑑

+ [
1

𝐶𝑡
−

𝛽1
2

2𝐶1
2
(1 − 𝐶𝑡𝛽1

2) −
𝛽2

2

2𝐶2
2
(1 − 𝐶𝑡𝛽2

2)

+
𝛽1𝛽2

𝐶1𝐶2
∑𝐶𝑐𝑖(𝛼2𝑖−1,1𝛼2𝑖−1,2 + 𝛼2𝑖,1𝛼2𝑖,2)

3

𝑖=1

] 𝑞𝑑
2

+ ∑−[
𝛽1𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐴𝑖 + 𝛼2𝑖,1𝐵𝑖)

3

𝑖=1

+
𝛽2𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐴𝑖 + 𝛼2𝑖,2𝐵𝑖)] 𝑞𝐽𝑖+𝑞𝑑

− [
𝛽1𝐶𝑐𝑖

𝐶1∆𝑖
2 (𝛼2𝑖−1,1𝐵𝑖 + 𝛼2𝑖,1𝐴𝑖)

+
𝛽2𝐶𝑐𝑖

𝐶2∆𝑖
2 (𝛼2𝑖−1,2𝐵𝑖 + 𝛼2𝑖,2𝐴𝑖)] 𝑞𝐽𝑖−𝑞𝑑                                            (B6) 
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